The Deep and Wide algorithm directly extracts the results of Embedding into the DNN to further extract high-order feature intersections, and finally it combines the first-order features with the higher-order features for prediction. The framework is as follows:
- SimpleInputLayer: sparse data input layer, which optimizes sparse high-dimensional data, is essentially a FCLayer.
- Embedding: implicit embedding layer, if the feature is not one-hot, multiplied by the eigenvalue.
- FCLayer: the most common layer in DNN, linear transformation followed by transfer function.
- SumPooling: adding multiple input data to element-wise, requiring the input have the same shape.
- SimpleLossLayer: loss layer, different loss functions can be specified
override def buildNetwork(): Unit = {
val wide = new SimpleInputLayer("input", 1, new Identity(),
JsonUtils.getOptimizerByLayerType(jsonAst, "SparseInputLayer"))
val embeddingParams = JsonUtils.getLayerParamsByLayerType(jsonAst, "Embedding")
.asInstanceOf[EmbeddingParams]
val embedding = new Embedding("embedding", embeddingParams.outputDim, embeddingParams.numFactors,
embeddingParams.optimizer.build()
)
val hiddenLayer = JsonUtils.getFCLayer(jsonAst, embedding)
val join = new SumPooling("sumPooling", 1, Array[Layer](wide, hiddenLayer))
new SimpleLossLayer("simpleLossLayer", join, lossFunc)
}
When Deep and wide have more parameters, they need to be specified in the form of a Json configuration file(see Json description for a complete description of the Json configuration file), A typical example is as follows:(see data)
{
"data": {
"format": "dummy",
"indexrange": 148,
"numfield": 13,
"validateratio": 0.1
},
"model": {
"modeltype": "T_DOUBLE_SPARSE_LONGKEY",
"modelsize": 148
},
"train": {
"epoch": 10,
"numupdateperepoch": 10,
"lr": 0.1,
"decay": 0.8
},
"default_optimizer": {
"type": "momentum",
"momentum": 0.9,
"reg2": 0.01
},
"layers": [
{
"name": "wide",
"type": "simpleinputlayer",
"outputdim": 1,
"transfunc": "identity"
},
{
"name": "embedding",
"type": "embedding",
"numfactors": 8,
"outputdim": 104
},
{
"name": "fclayer",
"type": "FCLayer",
"inputlayer": "embedding",
"outputdims": [
100,
100,
1
],
"transfuncs": [
"relu",
"relu",
"identity"
]
},
{
"name": "sumPooling",
"type": "SumPooling",
"outputdim": 1,
"inputlayers": [
"wide",
"fclayer"
]
},
{
"name": "simplelosslayer",
"type": "simplelosslayer",
"lossfunc": "logloss",
"inputlayer": "sumPooling"
}
]
}
runner="com.tencent.angel.ml.core.graphsubmit.GraphRunner"
modelClass="com.tencent.angel.ml.core.graphsubmit.AngelModel"
$ANGEL_HOME/bin/angel-submit \
--angel.job.name DeepFM \
--action.type train \
--angel.app.submit.class $runner \
--ml.model.class.name $modelClass \
--angel.train.data.path $input_path \
--angel.save.model.path $model_path \
--angel.log.path $log_path \
--angel.workergroup.number $workerNumber \
--angel.worker.memory.gb $workerMemory \
--angel.worker.task.number $taskNumber \
--angel.ps.number $PSNumber \
--angel.ps.memory.gb $PSMemory \
--angel.output.path.deleteonexist true \
--angel.task.data.storage.level $storageLevel \
--angel.task.memorystorage.max.gb $taskMemory \
--angel.worker.env "LD_PRELOAD=./libopenblas.so" \
--angel.ml.conf $daw_json_path \
--ml.optimizer.json.provider com.tencent.angel.ml.core.PSOptimizerProvider
For the deep learning model, its data, training and network configuration should be specified in Json file first. Resources such as: worker,ps depend on detail dataset.