diff --git a/Project.toml b/Project.toml index d8bba62..dc31d84 100644 --- a/Project.toml +++ b/Project.toml @@ -2,7 +2,7 @@ name = "AlgebraicRewriting" uuid = "725a01d3-f174-5bbd-84e1-b9417bad95d9" license = "MIT" authors = ["Kris Brown "] -version = "0.3.5" +version = "0.3.6" [deps] ACSets = "227ef7b5-1206-438b-ac65-934d6da304b8" @@ -25,7 +25,7 @@ AlgebraicRewritingLuxorExt = "Luxor" [compat] ACSets = "0.2.20" -Catlab = "0.16.11" +Catlab = "0.16.16" CompTime = "0.1" DataMigrations = "0.0.3,0.1" DataStructures = "0.17, 0.18" diff --git a/README.md b/README.md index 6737cb7..26a98f9 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,10 @@ This package defines DPO, SPO, and SqPO for C-Sets, as described in [[Brown 2022](https://arxiv.org/abs/2111.03784)]. See the [documentation](https://algebraicjulia.github.io/AlgebraicRewriting.jl/dev/) for more details. +To locally build the [documentation](https://algebraicjulia.github.io/AlgebraicRewriting.jl/dev) and the literate code examples, run the following in the command line: +``` +julia --project=docs -e "using AlgebraicRewriting, LiveServer; servedocs(literate_dir=\"docs/literate\",skip_dir=\"docs/src/generated\")" +``` ## NOTE This library is currently under active development, and so is not yet at a diff --git a/docs/literate/full_demo.jl b/docs/literate/full_demo.jl index d025e4f..ff172d6 100644 --- a/docs/literate/full_demo.jl +++ b/docs/literate/full_demo.jl @@ -1,6 +1,6 @@ # # Full Demo -using AlgebraicRewriting, Catlab, AlgebraicPetri, DataMigrations +using AlgebraicRewriting, Catlab, DataMigrations, AlgebraicPetri using Test @@ -101,7 +101,7 @@ rule2 = Rule(@migration(SchRulel, SchGraph, begin l => begin v => src(e) end - end), yG) + end), yG); # We can also rewrite without a match (and let it pick an arbitrary match). @@ -114,7 +114,8 @@ rule2 = Rule(@migration(SchRulel, SchGraph, begin rule_spo = Rule{:SPO}(l, r) # (same data as before) @test length(get_matches(rule_spo, G)) == 4 # there are now four matches -res = rewrite(rule_spo, G) +m = get_matches(rule_spo, G)[1] +res = rewrite_match(rule_spo, m) to_graphviz(res) @test is_isomorphic(res, path_graph(Graph, 3) ⊕ R) @@ -127,19 +128,23 @@ to_graphviz(res) L = Graph(1) I = Graph(2) -R = path_graph(Graph, 2) +R = path_graph(Graph, 2); #= -We can use automated homomorphism search to reduce the tedium of specifying data manually. In this case, there is a unique option. +We can use automated homomorphism search to reduce the tedium of specifying data +manually. In this case, there is a unique option. In general, `homomorphism` +will throw an error if there is *more* than one homomorphism. =# -l = homomorphism(I, L) +l = homomorphism(I, L); #= -There are many constraints we can put on the search, such as being monic. +There are many constraints we can put on the search, such as being monic. Here +there are two monic homomorphisms (sending vertices 1 and 2 to (1,2) and (2,1)), +so we add the keyword `any=true` to avoid throwing an error. =# -r = homomorphism(I, R; monic=true) +r = homomorphism(I, R; monic=true, any=true) rule_sqpo = Rule{:SqPO}(l, r) # same data as before) @@ -154,56 +159,64 @@ to_graphviz(res; prog="neato") # # 4. PBPO+ #= -PBPO+ requires not merely a span but also additional data for L and K which can be thought of as type graphs. The graph G that we rewrite will be typed over the L' type graph to determine how it is rewritten. +PBPO+ requires a span just like the other kinds of rewriting. =# L = Graph(1) -K = Graph(2) -l = homomorphism(K, L) -r = id(K) - -# We allow edges into and out of the matched vertex as well as edges -# between the vertices incident to the matched vertex -L′ = @acset Graph begin - V = 3 - E = 6 - src = [1, 1, 1, 2, 3, 3] - tgt = [1, 2, 3, 3, 3, 1] -end -tl = ACSetTransformation(L, L′; V=[2]) # 2 is the matched vertex -to_graphviz(L′; node_labels=true) +K = R = Graph(2) +l, r = homomorphism(K,L), id(K); -# The outneighbors of the matched vertex are duplicated (an edge connects the -# old ones to the new ones) and the matched vertex is duplicated. The new copy -# of the matched vertex points at the new ones. It does not have any inneighbors. +# However, it also requires more data. The graph G that we rewrite will be typed *over* the L' type graph which controls how various parts of the context (not merely the matched pattern) are rewritten. + +# 1 = root of the deep copy, 2 = children of #1, 3 = everything else +L′ = @acset Graph begin V=3;E=5;src=[1,2,3,3,3];tgt=[2,2,1,2,3] end +to_graphviz(L′; node_labels=true) -K′ = @acset Graph begin - V = 5 - E = 9 - src = [1, 1, 1, 2, 3, 3, 3, 4, 5] - tgt = [1, 2, 3, 3, 3, 1, 5, 5, 5] +tl = ACSetTransformation(L,L′;V=[1]) +K′ = @acset Graph begin V=5;E=9 ; + src=[1,2,3,3,4,3,5,3,3];tgt=[2,2,3,2,5,5,5,1,4] +end +tk = ACSetTransformation(K,K′;V=[1,4]) +l′ = homomorphism(K′,L′; initial=(V=[1,2,3,1,2],)); + +"""Given a match L → G, compute what the typing map G → L' should be""" +function get_adherence(m::ACSetTransformation) + root, G, descendents = only(collect(m[:V])), codom(m), Set() + queue = [root] + while !isempty(queue) + nxt = pop!(queue) + union!(descendents, outneighbors(G,nxt)) + union!(queue, outneighbors(G,nxt)) + end + return (V = map(parts(codom(m),:V)) do v_G + if v_G == root return 1 + elseif v_G ∈ descendents return 2 + else return 3 + end + end,) end -tk = ACSetTransformation(K, K′; V=[2, 4]) -to_graphviz(K′; node_labels=true) -l′ = homomorphism(K′, L′; initial=(V=[1, 2, 3, 2, 3],)) +rule = PBPORule(l, r, tl, tk, l′; adherence=get_adherence); -prule = PBPORule(l, r, tl, tk, l′) +# Think of the following graph as a file system -# Apply to an example vertex (#3) with two inneighbors and one outneighbor. -G = @acset Graph begin - V = 4 - E = 5 - src = [1, 1, 2, 3, 4] - tgt = [2, 3, 3, 4, 4] +G = @acset Graph begin V=8; E=8; + src=[1,1,2,2,3,4,4,5]; tgt=[2,3,4,5,6,5,7,8] end + to_graphviz(G; node_labels=true) -m = get_match(prule, G; initial=(V=[3],) => Dict()) +# Executing this rule (forcing the pattern to match at vertex 2) performs a +# "deepcopy" operation, copying vertex 2 and everything underneath it. + +expected = @acset Graph begin V=13;E=14; + src=[7,7,7,1,1,3,3,4,2,2,10,10,11,8]; tgt=[1,2,8,3,4,5,4,6,10,11,12,11,13,9] +end + +@test is_isomorphic(expected, rewrite(rule, G; initial=(V=[2],))) + +to_graphviz(expected; node_labels=true) -res = rewrite_match(prule, m) -# V1 is copied to V2. Outneighbor V5 (w/ loop) is copied to V6, creating an edge -to_graphviz(res; node_labels=true) # # 5. Generalizing Graphs @@ -213,7 +226,6 @@ Any data structure which implements the required functions we need can, in princ Here we'll do rewriting in graphs sliced over •⇆•, which is isomorphic to the category of (whole-grain) Petri nets, with States and Transitions. =# - function graph_slice(s::Slice) h = s.slice V, E = collect.([h[:V], h[:E]]) @@ -222,10 +234,7 @@ function graph_slice(s::Slice) nS, nT, nI, nO = length.([S, T, I, O]) findS, findT = [x -> findfirst(==(x), X) for X in [S, T]] to_graphviz(@acset AlgebraicPetri.PetriNet begin - S = nS - T = nT - I = nI - O = nO + S = nS; T = nT; I = nI; O = nO is = findS.(g[I, :src]) it = findT.(g[I, :tgt]) ot = findT.(g[O, :src]) @@ -236,18 +245,18 @@ end; # This is the graph we are slicing over. two = @acset Graph begin - V = 2 - E = 2 - src = [1, 2] - tgt = [2, 1] + V = 2; E = 2; src = [1, 2]; tgt = [2, 1] end -# Define a rule which deletes a [T] -> S edge +to_graphviz(two) + +# Define a rule which deletes a [T] -> S edge. Start with the pattern, L. L_ = path_graph(Graph, 2) L = Slice(ACSetTransformation(L_, two, V=[2, 1], E=[2])) # [T] ⟶ (S) graph_slice(L) +# Then define I and R I_ = Graph(1) I = Slice(ACSetTransformation(I_, two, V=[2])) # [T] R_ = Graph(2) @@ -274,11 +283,13 @@ While the vast majority of functionality is focused on ACSets at the present mom #= We can construct commutative diagrams with certain edges left unspecified or marked with ∀ or ∃. If only one edge is left free, we can treat the diagram as a boolean function which tests whether the morphism makes the specified paths commute (or not commute). This generalizes positive/negative application conditions and lifting conditions, but because those are most common there are constructors AppCond and LiftCond to make these directly. +``` ∀ [↻•] → ? ↓ ↗ ∃ ↓ [↻•⟶•] → [↻•⟶•⟵•↺] - +``` +` Every vertex with a loop also has a map to the vertex marked by the bottom map. =# @@ -291,25 +302,19 @@ end v = homomorphism(t, looparr) loop_csp = @acset Graph begin - V = 3 - E = 4 - src = [1, 3, 1, 3] - tgt = [1, 3, 2, 2] + V = 3; E = 4; src = [1, 3, 1, 3]; tgt = [1, 3, 2, 2] end -b = homomorphism(looparr, loop_csp; monic=true) +b = homomorphism(looparr, loop_csp; initial=(V=[2,1],)) constr = LiftCond(v, b) -@test !apply_constraint(constr, homomorphism(t, loop_csp)) +@test !apply_constraint(constr, homomorphism(t, loop_csp; initial=(V=[1],))) @test apply_constraint(constr, b) # We can combining constraints with logical combinators. # match vertex iff it has 2 or 3 self loops one, two, three, four, five = [@acset(Graph, begin - V = 1 - E = n - src = 1 - tgt = 1 + V = 1; E = n; src = 1; tgt = 1 end) for n in 1:5] c2 = AppCond(homomorphism(Graph(1), two); monic=true) # PAC @@ -343,16 +348,12 @@ L = @acset_colim yWG begin end I = WeightedGraph{Int}(2) R = @acset WeightedGraph{Int} begin - V = 2 - E = 1 - Weight = 1 - src = 1 - tgt = 2 - weight = [AttrVar(1)] + V = 2; E = 1; Weight = 1 + src = [1]; tgt = [2]; weight = [AttrVar(1)] end -l = homomorphism(I, L; monic=true) -r = homomorphism(I, R; monic=true) +l = homomorphism(I, L; initial=(V=1:2,)) +r = homomorphism(I, R; initial=(V=1:2,)) rule = Rule(l, r; monic=[:E], expr=Dict(:Weight => [xs -> xs[1] + xs[2]])) G = @acset WeightedGraph{Int} begin @@ -363,12 +364,10 @@ G = @acset WeightedGraph{Int} begin weight = [10, 20, 100] end -@test rewrite(rule, G) == @acset WeightedGraph{Int} begin - V = 1 - E = 2 - src = 1 - tgt = 1 - weight = [30, 100] +m = get_matches(rule,G)[1] +@test rewrite_match(rule, m) == @acset WeightedGraph{Int} begin + V = 1; E = 2 + src = [1]; tgt = [1]; weight = [30, 100] end # # 8. Graph processes @@ -381,7 +380,7 @@ via analyzing the colimit of all the partial maps induced by the rewrites. using AlgebraicRewriting.Processes: RWStep, find_deps -G0, G1, G2, G3 = Graph.([0, 1, 2, 3]) +G0, G1, G2, G3 = Graph.([0, 1, 2, 3]); # Delete a node Rule1 = Span(create(G1), id(G0)); # Merge two nodes @@ -389,7 +388,7 @@ Rule2 = Span(id(G2), homomorphism(G2, G1)); # Add a node Rule3 = Span(id(G0), create(G1)) -R1, R2, R3 = [Rule(l, r) for (l, r) in [Rule1, Rule2, Rule3]] +R1, R2, R3 = [Rule(l, r) for (l, r) in [Rule1, Rule2, Rule3]]; # # 9. Trajectory @@ -397,32 +396,28 @@ R1, R2, R3 = [Rule(l, r) for (l, r) in [Rule1, Rule2, Rule3]] M1 = create(G2) CM1 = ACSetTransformation(G1, G3; V=[3]) Pmap1 = Span(id(G2), ACSetTransformation(G2, G3; V=[1, 2])) -RS1 = RWStep(Rule3, Pmap1, M1, CM1) +RS1 = RWStep(Rule3, Pmap1, M1, CM1); # Step 2: merge node 2 and 3 to yield a G2 M2 = ACSetTransformation(G2, G3; V=[2, 3]) CM2 = ACSetTransformation(G1, G2; V=[2]) Pmap2 = Span(id(G3), ACSetTransformation(G3, G2; V=[1, 2, 2])) -RS2 = RWStep(Rule2, Pmap2, M2, CM2) +RS2 = RWStep(Rule2, Pmap2, M2, CM2); # Step 3: delete vertex 1 M3 = ACSetTransformation(G1, G2; V=[1]) CM3 = create(G1) Pmap3 = Span(ACSetTransformation(G1, G2; V=[2]), id(G1)) -RS3 = RWStep(Rule1, Pmap3, M3, CM3) +RS3 = RWStep(Rule1, Pmap3, M3, CM3); -steps = [RS1, RS2, RS3] +steps = [RS1, RS2, RS3]; g = find_deps(steps) to_graphviz(g; node_labels=true) -expected = @acset Graph begin - V = 3 - E = 1 - src = 1 - tgt = 2 -end +# Confirm this what we expect +expected = @acset Graph begin V = 3; E = 1; src = 1; tgt = 2 end @test expected == g # Interface that just uses rules and match morphisms: @@ -432,4 +427,4 @@ end σ₃ = ACSetTransformation(G3, G3; V=[3, 1, 2]) g′ = find_deps([R3 => M1, R2 => M2 ⋅ σ₃, R1 => M3 ⋅ σ₂]) -@test g′ == g \ No newline at end of file +@test g′ == g diff --git a/docs/literate/game_of_life.jl b/docs/literate/game_of_life.jl index cc3098c..309f53b 100644 --- a/docs/literate/game_of_life.jl +++ b/docs/literate/game_of_life.jl @@ -6,17 +6,21 @@ This is a demonstration of the game of life as an agent-based model. We start with importing some libraries. =# -using AlgebraicRewriting -using Catlab, Catlab.Graphs, Catlab.CategoricalAlgebra, Catlab.Theories +using AlgebraicRewriting, Catlab import Catlab.Graphics: to_graphviz using Catlab.Graphics.Graphviz: Attributes, Statement, Node, Edge, Digraph -using PrettyTables -using Luxor +using PrettyTables, Luxor #= -The game of life has two rules: one which turns living things dead, and one that brings dead things to life. We model the terrain as a symmetric graph: cells are vertices. Neighboring cells have edges between them. - -Implementation wise, if we are going to update cells one at a time, we must keep track of two bits of information (the cell's living status for the *current* timestep and whether it will be alive in the *next* timestep). Thus we need helper rule to overwrite the "current" life status with the "next" life status at the end of each timestep. +The game of life has two rules: one which turns living things dead, and one that +brings dead things to life. We model the terrain as a symmetric graph: cells are +vertices. Neighboring cells have edges between them. + +Implementation wise, if we are going to update cells one at a time, we must keep +track of two bits of information (the cell's living status for the *current* +timestep and whether it will be alive in the *next* timestep). Thus we need +helper rule to overwrite the "current" life status with the "next" life status +at the end of each timestep. =# # # Ontology @@ -161,7 +165,7 @@ data migration, `F`. =# A = Life(1) -view_life(homomorphism(F(A), init)) |> println +view_life(homomorphism(F(A), init; any=true)) |> println #= We must also work with miniature game states that are *not* grids in order for @@ -244,7 +248,7 @@ rewrite rules. BirthP1 = living_neighbors(3) # must have 3 neighbors BirthN1 = living_neighbors(4) # forbid the cell to have 4 neighbors BirthN2 = Curr() # forbid the cell to be alive (i.e. it's currently dead) -BP1, BN1, BN2 = homomorphism.(Ref(Life(1)), [BirthP1, BirthN1, BirthN2]) +BP1, BN1, BN2 = homomorphism.(Ref(Life(1)), [BirthP1, BirthN1, BirthN2]; initial=(V=[1],)) bac = [AppCond(BP1; monic=true), AppCond.([BN1, BN2], false; monic=true)...] Birth = Rule(id(Life(1)), to_next(); ac=bac); @@ -254,7 +258,7 @@ PersistR = @acset Life begin end PersistP1 = living_neighbors(2; alive=true) PersistN1 = living_neighbors(4; alive=true) -DR, DP1, DN1 = homomorphism.(Ref(Curr()), [PersistR, PersistP1, PersistN1]) +DR, DP1, DN1 = homomorphism.(Ref(Curr()), [PersistR, PersistP1, PersistN1]; initial=(V=[1],)) pac = [AppCond(DP1; monic=true), AppCond(DN1, false; monic=true)] Persist = Rule(id(Curr()), DR; ac=pac); diff --git a/docs/literate/lotka_volterra.jl b/docs/literate/lotka_volterra.jl index ebd63ba..7ad1596 100644 --- a/docs/literate/lotka_volterra.jl +++ b/docs/literate/lotka_volterra.jl @@ -491,7 +491,7 @@ sheep_reprod_rule = Rule( ); sheep_reprod = RuleApp(:reproduce, sheep_reprod_rule, - id(S), hom(S, s_reprod_r)) |> tryrule; + id(S), hom(S, s_reprod_r; any=true)) |> tryrule; # #### Reproduction test @@ -541,8 +541,9 @@ begin sheep_loc = 2; sheep_eng = [3]; sheep_dir = [:N] countdown = [0, 10, 2]; dir = fill(:N, 2) end - @test is_isomorphic(rewrite(g_inc_rule, ex), expected) - rewrite!(g_inc_rule, ex) + m = get_matches(g_inc_rule, ex)[1] + @test is_isomorphic(rewrite_match(g_inc_rule, m), expected) + rewrite_match!(g_inc_rule, m) @test is_isomorphic(ex, expected) end; diff --git a/src/categorical_algebra/CSets.jl b/src/categorical_algebra/CSets.jl index 7789ff4..6689dd8 100644 --- a/src/categorical_algebra/CSets.jl +++ b/src/categorical_algebra/CSets.jl @@ -194,7 +194,7 @@ function pushout_complement(pair::ComposablePair{<:ACSet, <:TightACSetTransforma G[g_components[o](val), f] catch e vᵢ = findfirst(==(AttrVar(v)), k_components[at]) - m[at](AttrVar(l[at](vᵢ))) + m[at](l[at](AttrVar(vᵢ))) end end) end diff --git a/src/incremental/IncrementalConstraints.jl b/src/incremental/IncrementalConstraints.jl index 82133c4..902663a 100644 --- a/src/incremental/IncrementalConstraints.jl +++ b/src/incremental/IncrementalConstraints.jl @@ -150,13 +150,13 @@ function can_match(constr::IncConstraints, m::ACSetTransformation; if pac for ac in constr.pac - isnothing(extend_morphism(m, ac.m; monic=ac.monic)) && return false + isnothing(extend_morphism(m, ac.m; any=true, monic=ac.monic)) && return false end end if nac for ac in constr.nac - isnothing(extend_morphism(m, ac.m; monic=ac.monic)) || return false + isnothing(extend_morphism(m, ac.m; any=true, monic=ac.monic)) || return false end end diff --git a/src/rewrite/Inplace.jl b/src/rewrite/Inplace.jl index 6e27e9a..8296610 100644 --- a/src/rewrite/Inplace.jl +++ b/src/rewrite/Inplace.jl @@ -288,7 +288,7 @@ end rewrite_match!(r::Rule{:DPO}, ::Nothing; kw...) = nothing -rewrite!(r::Rule{:DPO}, G; initial=nothing, random=false, kw...) = +rewrite!(r::Rule{:DPO}, G; initial=(;), random=false, kw...) = rewrite_match!(r, get_match(r, G; initial, random); kw...) end diff --git a/src/rewrite/PBPO.jl b/src/rewrite/PBPO.jl index 7355eec..1f0dd5e 100644 --- a/src/rewrite/PBPO.jl +++ b/src/rewrite/PBPO.jl @@ -116,30 +116,15 @@ The "strong match" condition we enforce is that: tl⁻¹(α(A)) = a⁻¹(A). Thi we can deduce precisely what m is by looking at α. """ -function get_matches(rule::PBPORule, G::ACSet; initial=nothing, - α_unique=true, random=false, n=-1, kw...) - S = acset_schema(G) +function get_matches(rule::PBPORule, G::ACSet; initial=(;), + α_unique=true, random=false, take=nothing) res = [] # Quadruples of of (m, Labs, abs, α) L = codom(left(rule)) - # Process the initial constraints for match morphism and typing morphism - if isnothing(initial) - matchinit, typinit = (;), (;) - elseif initial isa Union{NamedTuple,AbstractDict} - matchinit, typinit = Dict(pairs(initial)), (;) - elseif length(initial)==2 - matchinit, typinit = [Dict(pairs(x)) for x in initial] - else - error("Unexpected type for `initial` keyword: $initial") - end - # Search for each match morphism - backtracking_search(L, G; monic=rule.monic, initial=NamedTuple(matchinit), - random) do m - m_seen = false # keeps track if α_unique is violated for each new m - if all(ac->apply_constraint(ac, m), rule.acs) - @debug "m: $([k=>collect(v) for (k,v) in pairs(components(m))])" - + backtracking_search(L, G; monic=rule.monic, initial=initial, random) do ms + for m in ms + all(ac -> apply_constraint(ac, m), rule.acs) || continue # Construct partially-abtract version of G. Labs: L->A and abs: A->G Labs, abs = partial_abstract(m) A = codom(Labs) @@ -150,46 +135,49 @@ function get_matches(rule::PBPORule, G::ACSet; initial=nothing, # Return nothing if failure if !isnothing(init) αs = homomorphisms(A, codom(rule.tl); initial=init) - # Also return nothing if the result is not unique - if length(αs) ==1 - push!(res, deepcopy((m, Labs, abs, only(αs)))) - end + # Also return nothing if the result isn't unique + length(αs) == 1 && push!(res, deepcopy((m, Labs, abs, only(αs)))) end else # Search for adherence morphisms: A -> L′ init = extend_morphism_constraints(rule.tl, Labs) isnothing(init) && return false - backtracking_search(A, codom(rule.tl); initial=init, kw...) do α - @debug "\tα: ", [k=>collect(v) for (k,v) in pairs(components(α))] - - # Check strong match condition - strong_match = all(types(S)) do o - prt = o ∈ ob(S) ? identity : AttrVar - all(prt.(parts(A,o))) do i - p1 = preimage(rule.tl[o],α[o](i)) - p2 = preimage(Labs[o], i) - p1 == p2 - end - end - if strong_match && all(lc -> apply_constraint(lc, α), rule.lcs) - all(is_natural, [m, Labs, abs, α]) || error("Unnatural match") - if m_seen error("Multiple α for a single match $m") end - @debug "\tSUCCESS" - push!(res, deepcopy((m, Labs, abs, α))) - m_seen |= α_unique - return length(res) == n - else - @debug "\tFAILURE (strong $strong_match)" - return false - end + kwargs = if α_unique + (max = 1,) + else + (take = isnothing(take) ? nothing : take-length(res),) + end + for α in homomorphisms(A, codom(rule.tl); initial=init, kwargs..., + filter=test_adherence(rule, Labs)) + push!(res, deepcopy((m, Labs, abs, α))) + length(res) == take && return true end end end - return length(res) == n + return false end return res end +""" See `get_matches(::PBPORule, ::ACSet)` """ +function test_adherence(rule::PBPORule, Labs::ACSetTransformation) + A = codom(Labs) + S = acset_schema(A) + """ For use in the homomorphism search for adherence morphisms """ + function filter(α::ACSetTransformation)::Bool + # Check strong match condition + strong_match = all(types(S)) do o + prt = o ∈ ob(S) ? identity : AttrVar + all(prt.(parts(A, o))) do i + p1 = preimage(rule.tl[o],α[o](i)) + p2 = preimage(Labs[o], i) + p1 == p2 + end + end + return strong_match && all(lc -> apply_constraint(lc, α), rule.lcs) + end +end + """ This construction addresses the following problem: ideally when we 'abstract' diff --git a/src/rewrite/Utils.jl b/src/rewrite/Utils.jl index 8ec765d..5a36a4f 100644 --- a/src/rewrite/Utils.jl +++ b/src/rewrite/Utils.jl @@ -144,23 +144,27 @@ has_comp(monic::Vector{Symbol}, c::Symbol) = c ∈ monic """ Returns nothing if the match is acceptable for rewriting according to the rule, otherwise returns the reason why it should be rejected + +homsearch = if we know ahead of time that m was obtained m via automatic hom + search, then we do not need to make certain checks """ -function can_match(r::Rule{T}, m; initial=Dict()) where T +function can_match(r::Rule{T}, m; homsearch=false, initial=Dict()) where T S = acset_schema(dom(m)) - for k in ob(S) - if has_comp(r.monic, k) && !is_monic(m[k]) - return ("Match is not injective", k, m[k]) + if !homsearch + for k in ob(S) + if has_comp(r.monic, k) && !is_monic(m[k]) + return ("Match is not injective", k, m[k]) + end end - end - for (k, vs) in collect(initial) - errs = check_initial(vs, collect(m[k])) - if !isempty(errs) - return ("Initial condition violated", k, errs) + for (k, vs) in collect(initial) + errs = check_initial(vs, collect(m[k])) + if !isempty(errs) + return ("Initial condition violated", k, errs) + end end + is_natural(m) || return ("Match is not natural", m) end - is_natural(m) || return ("Match is not natural", m) - if T == :DPO gc = gluing_conditions(ComposablePair(r.L, m)) if !isempty(gc) @@ -183,7 +187,7 @@ function can_match(r::Rule{T}, m; initial=Dict()) where T end """Get one match (if any exist) otherwise return """ -get_match(args...; kw...) = let x = get_matches(args...; n=1, kw...); +get_match(args...; kw...) = let x = get_matches(args...; take=1, kw...); isempty(x) ? nothing : only(x) end """ @@ -193,32 +197,16 @@ This function has the same behavior as the generic `get_matches`, but it is more performant because we do not have to query all homomorphisms before finding a valid match, in case n=1. """ -function get_matches(r::Rule{T}, G::ACSet; initial=nothing, - random=false, n=-1) where T - initial = isnothing(initial) ? Dict() : initial - - hs = [] - backtracking_search(codom(r.L), G; monic=r.monic, initial=NamedTuple(initial), - random) do h - cm = can_match(r, h) - if isnothing(cm) - push!(hs, h) - return length(hs) == n # we stop the search Hom(L,G) when this holds - else - @debug "$([k => collect(v) for (k,v) in pairs(components(h))]): $cm" - return false - end - end - return hs -end +get_matches(r::Rule, G::ACSet; kw...) = + homomorphisms(codom(r.L), G; kw..., monic=r.monic, + filter= m -> isnothing(can_match(r, m; homsearch=true))) """If not rewriting ACSets, we have to compute entire Hom(L,G).""" -function get_matches(r::Rule{T}, G; initial=nothing, random=false, n=-1) where T - initial = NamedTuple(isnothing(initial) ? Dict() : initial) - ms = homomorphisms(codom(left(r)), G; monic=r.monic, initial, random) +function get_matches(r::Rule, G; take=nothing, kw...) + ms = homomorphisms(codom(left(r)), G; kw..., monic=r.monic) res = [] for m in ms - if (n < 0 || length(res) < n) && isnothing(can_match(r, m)) + if (isnothing(take) || length(res) < take) && isnothing(can_match(r, m)) push!(res, m) end end @@ -276,7 +264,7 @@ function rewrite_match_maps end # to be implemented for each T """ rewrite(r::Rule, G; kw...) Perform a rewrite (automatically finding an arbitrary match) and return result. """ -function rewrite(r::AbsRule, G; initial=nothing, random=false, kw...) +function rewrite(r::AbsRule, G; initial=(;), random=false, kw...) m = get_match(r, G; initial, random) isnothing(m) ? nothing : rewrite_match(r, m; kw...) end diff --git a/test/categorical_algebra/CSets.jl b/test/categorical_algebra/CSets.jl index 43cd14c..0a8f8fc 100644 --- a/test/categorical_algebra/CSets.jl +++ b/test/categorical_algebra/CSets.jl @@ -31,7 +31,7 @@ const LSet = LFinSetType{Symbol} I = @acset LSet begin X=1; D=1; f=[AttrVar(1)] end G = @acset LSet begin X=2; f=[:x,:y] end -f = homomorphism(I,G) +f = homomorphism(I,G; initial=(X=[1],)) kg = last(pushout_complement(id(I),f)) @test dom(kg) == @acset LSet begin X=2; D=1; f=[AttrVar(1),:y] end diff --git a/test/incremental/Benchmark.jl b/test/incremental/Benchmark.jl index 74e3a4d..68afe13 100644 --- a/test/incremental/Benchmark.jl +++ b/test/incremental/Benchmark.jl @@ -21,10 +21,10 @@ while true I = rand(path_graph.(Graph, 2:4)) NV=200 start = erdos_renyi(Graph, NV, 2*NV) - l = homomorphism(I, L; monic=true) - r = homomorphism(I, R; monic=true) + l = homomorphism(I, L; monic=true, any=true) + r = homomorphism(I, R; monic=true, any=true) isnothing(r) && continue - m = homomorphism(I, start) + m = homomorphism(I, start; any=true) isnothing(m) && continue res = rewrite_match_maps(Rule(id(I), r), m); (pl, pr), rmap = get_pmap(:DPO, res), get_rmap(:DPO, res); @@ -50,14 +50,14 @@ DDS(i::Int) = @acset DDS begin X=i; Φ=[rand(1:i) for _ in 1:i] end while true L, R, I, A, B = DDS.([5, 5, 5, 3, 3]) - l1,l2,r1,r2 = hs = [homomorphism(x...; monic=true) for x in + l1,l2,r1,r2 = hs = [homomorphism(x...; monic=true, any=true) for x in [(A,L),(A,I),(B,I),(B,R)]] all(!isnothing, hs) || continue (_, l), (r, _) = pushout(l1,l2), pushout(r1,r2) rand_rule = Rule(l, r) start, pattern = DDS(2000), DDS(5) - m = homomorphism(codom(l), start) + m = homomorphism(codom(l), start; any=true) (!isnothing(m) && isnothing(can_match(rand_rule, m))) || continue res = rewrite_match_maps(rand_rule, m) diff --git a/test/incremental/IncrementalCC.jl b/test/incremental/IncrementalCC.jl index f0a779f..c27649a 100644 --- a/test/incremental/IncrementalCC.jl +++ b/test/incremental/IncrementalCC.jl @@ -13,7 +13,7 @@ G2 = Graph(2) # • ⇉ • e, ee = path_graph.(Graph, 2:3) # ↘ ↙ A = @acset Graph begin V=3; E=4; src=[1,1,1,2]; tgt=[2,2,3,3] end # • -A_rule = Rule(id(e), homomorphism(e, A)); +A_rule = Rule(id(e), homomorphism(e, A; initial=(E=[1],))); # Empty edge case #---------------- @@ -35,8 +35,8 @@ del, add = rewrite!(hset, A_rule, m) @test length.(match_vect(hset)) == [3,0,6] @test validate(hset) -m = homomorphism(e, state(hset); monic=true) -rewrite!(hset, A_rule) +m = homomorphism(e, state(hset); initial=(V=1:2,E=[1])) +rewrite!(hset, A_rule, m) @test validate(hset) @test length.(match_vect(hset)) == [3, 0, 6, 0, 8] @test !haskey(hset, 3=>7) @@ -53,8 +53,8 @@ roundtrip = IncCCHomSet(IncSumHomSet(hset)); #---------------- tri = @acset Graph begin V=3;E=3;src=[1,1,2];tgt=[3,2,3]end X = @acset Graph begin V=2; E=2; src=[1,2]; tgt=[2,2] end -omap = homomorphism(e, X) -r = homomorphism(e, tri) +omap = homomorphism(e, X; initial=(V=1:2,)) +r = homomorphism(e, tri; initial=(V=1:2,)) hset = IncHomSet(ee, [r], X); addition!(hset, r, omap) @test validate(hset) @@ -75,7 +75,8 @@ del = delete(Graph(1)) mset = IncHomSet(Graph(1), [del], G2⊕T; nac=[del]); @test length(keys(mset)) == 2 M_rule = Rule(id(Graph(1)), delete(Graph(1)); ac=[AppCond(del, false)]) -rewrite!(mset, M_rule) +m = ACSetTransformation(Graph(1), G2⊕T; V=[1]) +rewrite!(mset, M_rule, m) @test length(keys(mset)) == 1 rewrite!(mset, M_rule) @test length(keys(mset)) == 0 @@ -84,15 +85,15 @@ rewrite!(mset, M_rule) # Application conditions: NAC adding morphisms during deletion! #-------------------------------------------------------------- del = homomorphism(⊕(Graph[fill(T, 2); Graph(1)]), - state(mset); monic=true) # delete one loop + state(mset); initial=(V=1:3,)) # delete one loop deletion!(mset, del) @test length(keys(mset)) == 1 del = homomorphism(⊕(Graph[T; G2]), - state(mset); monic=true) # delete another loop + state(mset); initial=(V=1:3,)) # delete another loop deletion!(mset, del) @test length(keys(mset)) == 2 -del = homomorphism(Graph(3), state(mset); monic=true) # delete another loop +del = homomorphism(Graph(3), state(mset); initial=(V=1:3,)) # delete another loop deletion!(mset, del) @test length(keys(mset)) == 3 @@ -101,7 +102,7 @@ deletion!(mset, del) edge_loop = @acset Graph begin V=2; E=2; src=[1,1]; tgt=[1,2] end to_edge_loop = homomorphism(e, edge_loop; monic=true) # rem edge, not if src has loop -r = Rule(homomorphism(G2, e; monic=true), id(G2); +r = Rule(homomorphism(G2, e; initial=(V=1:2,)), id(G2); ac=[AppCond(to_edge_loop, false; monic=true)]); mset = IncHomSet(r, edge_loop); @@ -114,7 +115,7 @@ rewrite!(mset, r) # Application conditions: PAC removing morphisms during deletion! #---------------------------------------------------------------- # Remove edge, only if src has loop (no monic constraint on PAC) -r = Rule(homomorphism(G2, e; monic=true), id(G2); +r = Rule(homomorphism(G2, e; initial=(V=1:2,)), id(G2); ac=[AppCond(to_edge_loop)]); mset = IncHomSet(r, edge_loop ⊕ e); m1, m2 = get_matches(r, state(mset)) # first one removes the loop diff --git a/test/incremental/IncrementalSum.jl b/test/incremental/IncrementalSum.jl index 5cd04d3..b706a86 100644 --- a/test/incremental/IncrementalSum.jl +++ b/test/incremental/IncrementalSum.jl @@ -9,7 +9,7 @@ using AlgebraicRewriting.Incremental.IncrementalHom: runtime, state # • ⇉ • e, ee = path_graph.(Graph, 2:3) # ↘ ↙ A = @acset Graph begin V=3; E=4; src=[1,1,1,2]; tgt=[2,2,3,3] end # • -A_rule = Rule(id(e), homomorphism(e, A)); +A_rule = Rule(id(e), homomorphism(e, A; initial=(E=[1],))); start = @acset Graph begin V=3; E=3; src=[1,2,3]; tgt=[2,3,3] end hset = IncHomSet(ee ⊕ e, [A_rule.R], start); @@ -18,7 +18,7 @@ hset = IncHomSet(ee ⊕ e, [A_rule.R], start); @test !haskey(hset, [2=>2, 1=>2]) @test length(keys(hset)) == 9 @test hset[[1=>3,1=>3]] == hset[9] -del, add = rewrite!(hset, A_rule, homomorphisms(e, start)[2]); +del, add = rewrite!(hset, A_rule, homomorphism(e, start; initial=(V=2:3,))); @test isempty(del) @@ -28,7 +28,8 @@ del, add = rewrite!(hset, A_rule, homomorphisms(e, start)[2]); @test validate(hset) @test Set(matches(hset)) == Set(homomorphisms(ee ⊕ e, state(hset))) -rewrite!(hset, A_rule); +m = ACSetTransformation(e, state(hset); V=1:2, E=[1]) +rewrite!(hset, A_rule, m); @test validate(hset) @test Set(matches(hset)) == Set(homomorphisms(ee ⊕ e, state(hset))) @@ -42,7 +43,8 @@ roundtrip = IncSumHomSet(IncCCHomSet(hset)); hset = IncHomSet(Graph(1) ⊕ e, [A_rule.R], start); rewrite!(hset, A_rule, homomorphisms(e, start)[2]); @test validate(hset) -rewrite!(hset, A_rule) +m = ACSetTransformation(e, state(hset); V=1:2, E=[1]) +rewrite!(hset, A_rule, m) @test validate(hset) @test length(keys(hset)) == 45 @@ -56,7 +58,7 @@ DDS(phi::Vector{Int}) = @acset DDS begin X=(length(phi)); Φ=phi end p2 = DDS([2,2]) p22 = p2 ⊕ p2 -r = homomorphism(p22, DDS([2,2,4,4,4]); monic=true) +r = homomorphism(p22, DDS([2,2,4,4,4]); initial=(X=1:4,)) hset = IncHomSet(p22, [r], p22); rewrite!(hset, Rule(id(p22), r), id(p22)) @test validate(hset) diff --git a/test/rewrite/Constraints.jl b/test/rewrite/Constraints.jl index 2e13671..1397204 100644 --- a/test/rewrite/Constraints.jl +++ b/test/rewrite/Constraints.jl @@ -50,10 +50,10 @@ Every vertex with a loop also has a map to the vertex marked by the bottom map. t = terminal(Graph)|>apex v = homomorphism(t, looparr) loop_csp = @acset Graph begin V=3;E=4; src=[1,3,1,3]; tgt=[1,3,2,2] end -b = homomorphism(looparr, loop_csp; monic=true) +b = homomorphism(looparr, loop_csp; initial=(V=1:2,)) constr = LiftCond(v, b) -@test !apply_constraint(constr,homomorphism(t, loop_csp)) +@test !apply_constraint(constr,homomorphism(t, loop_csp; initial=(V=[1],))) @test apply_constraint(constr,b) @@ -68,8 +68,8 @@ Every vertex mapped into the leftmost vertex must also have an outgoing edge to a vertex that is is mapped into the middle vertex. """ -constr = LiftCond(homomorphism(Graph(1),p2), - homomorphism(p2, loop_csp; monic=true)) +constr = LiftCond(ACSetTransformation(Graph(1),p2; V=[1]), + homomorphism(p2, loop_csp; initial=(V=[1,2],))) G = @acset Graph begin V=3; E=3; src=[1,1,3]; tgt=[1,2,3] end h1,h2,h3,h4 = homomorphisms(G, loop_csp; initial=(V=Dict(1=>1),)) diff --git a/test/rewrite/DPO.jl b/test/rewrite/DPO.jl index 30314d8..b436a5b 100644 --- a/test/rewrite/DPO.jl +++ b/test/rewrite/DPO.jl @@ -1,8 +1,6 @@ module TestDPO -using Test -using Catlab, Catlab.CategoricalAlgebra, Catlab.Programs, Catlab.Graphs -using AlgebraicRewriting +using Test, Catlab, AlgebraicRewriting # Graphs ######## @@ -243,13 +241,15 @@ R = @acset SSet begin tgt=[2,3,4,4,3] end edge = @acset SSet begin E=1; V=2; src=[1]; tgt=[2] end -edge_left = homomorphism(edge, L; initial=Dict([:V=>[1,3]])) -edge_left_R = homomorphism(edge, R; initial=Dict([:V=>[1,3]])) -edge_right = homomorphism(edge, L; initial=Dict([:V=>[2,4]])) +edge_left = only(homomorphisms(edge, L; initial=Dict([:V=>[1,3]]))) +edge_left_R = only(homomorphisms(edge, R; initial=Dict([:V=>[1,3]]))) +edge_right = only(homomorphisms(edge, L; initial=Dict([:V=>[2,4]]))) G = apex(pushout(edge_left, edge_right)) -r = Rule(homomorphism(I, L; monic=true), homomorphism(I, R; monic=true); +r = Rule(homomorphism(I, L; initial=(V=1:4,)), + homomorphism(I, R; initial=(V=1:4,)); monic=true) -res = rewrite(r, G) +m = get_matches(r, G)[1] +res = rewrite_match(r, m) expected = apex(pushout(edge_left_R, edge_right)) @test !is_isomorphic(res, G) # it changed @test is_isomorphic(res, expected) @@ -287,19 +287,20 @@ I = WeightedGraph{Int}(2) R = @acset WeightedGraph{Int} begin V=2; E=1; Weight=1; src=1; tgt=2; weight=[AttrVar(1)] end -l = homomorphism(I,L; monic=true) -r = homomorphism(I,R; monic=true) +l = homomorphism(I,L; initial=(V=1:2,)) +r = homomorphism(I,R; initial=(V=1:2,)) rule = Rule(l, r; monic=[:E], expr=Dict(:Weight=>[xs->xs[1]+xs[2]])) G = @acset WeightedGraph{Int} begin V=1; E=3; src=1; tgt=1; weight=[10,20,100] end - -@test rewrite(rule, G) == @acset WeightedGraph{Int} begin +m = get_matches(rule, G)[1] +@test rewrite_match(rule, m) == @acset WeightedGraph{Int} begin V=1; E=2; src=1; tgt=1; weight=[30, 100] end # or, introduce free variables rule = Rule(l, r; monic=[:E], freevar=true) -@test rewrite(rule, G) == @acset WeightedGraph{Int} begin +m = get_matches(rule, G)[1] +@test rewrite_match(rule, m) == @acset WeightedGraph{Int} begin V=1; E=2; Weight=1; src=1; tgt=1; weight=[AttrVar(1), 100] end # Rewriting with induced equations between AttrVars in the rule @@ -312,13 +313,14 @@ const Foo = AbsFoo{Bool} L = @acset Foo begin X=2; f=[false, false] end I = @acset Foo begin X=2;D=2; f=AttrVar.(1:2) end R = @acset Foo begin X=2; f=[false, true]end -rule = Rule(homomorphism(I, L; monic=[:X]), homomorphism(I, R; monic=[:X])) +rule = Rule(homomorphism(I, L; initial=(X=1:2,)), + homomorphism(I, R; initial=(X=1:2,))) # we cannot match both X of L to the same part in G because this would yield # an inconsistent result @test length(get_matches(rule, L)) == 2 - -res = rewrite(rule, L) +m = get_matches(rule, L)[1] +res = rewrite_match(rule, m) @test is_isomorphic(res, R) # Now with arbitrary functions diff --git a/test/rewrite/Inplace.jl b/test/rewrite/Inplace.jl index 8579412..fefba9b 100644 --- a/test/rewrite/Inplace.jl +++ b/test/rewrite/Inplace.jl @@ -37,11 +37,6 @@ prog = compile_rewrite(toggle) @test F == rewrite(toggle, T) m= homomorphism(Pat, T) -is_natural(m) -can_match(toggle, m) - -get_match(toggle, T) - rewrite_match!(toggle, m; prog); @test T == F @@ -66,7 +61,7 @@ G = @acset MADIntGraph begin V=1; E=3; src=1; tgt=1; weight=[10,20,100] end # to_graphviz(G; edge_labels=:weight) # Rule -l, r = homomorphism.(Ref(MADIntGraph(2)), [L, R]; monic=true) +l, r = homomorphism.(Ref(MADIntGraph(2)), [L, R]; initial=(V=1:2,)) plus(xs) = xs[1] + xs[2] @@ -75,7 +70,8 @@ rule = Rule(l, r; monic=[:E], expr=Dict(:Weight=>[plus])) # Apply rewrite prog = compile_rewrite(rule) -f = rewrite!(rule, G) +m = get_matches(rule, G)[1] +f = rewrite_match!(rule, m) @test f.components[:Weight](AttrVar(1)) == 30 diff --git a/test/rewrite/PBPO.jl b/test/rewrite/PBPO.jl index 962db4f..7e6f929 100644 --- a/test/rewrite/PBPO.jl +++ b/test/rewrite/PBPO.jl @@ -1,8 +1,6 @@ module TestPBPO -using Test -using AlgebraicRewriting -using Catlab +using Test, AlgebraicRewriting, Catlab using AlgebraicRewriting.Rewrite.PBPO: partial_abstract @@ -50,7 +48,7 @@ G = @acset Graph begin V=5;E=11; src=[1,1,1,2,2,2,3,4,5,5,5]; tgt=[2,4,5,1,3,3,2,5,3,3,5] end -res = rewrite(rule,G; initial=(V=[1,2,3],)=>(V=[1,2,3,4,4],)) +res = rewrite(rule, G; initial=(V=[1,2,3],)) expected = @acset Graph begin V=6;E=10; src=[1,3,3,4,5,6,6,6,6,6];tgt=[3,4,5,5,5,3,3,4,5,6] end @@ -155,7 +153,7 @@ G = @acset Graph begin V=8; E=8; src=[1,1,2,2,3,4,4,5]; tgt=[2,3,4,5,6,5,7,8] end -init = (initial=Dict(:V=>[2])=>Dict(),) +init = (initial=(V=[2],),) @test length(get_matches(rule_no_condition, G; α_unique=false, init...)) > 1 @test_throws ErrorException get_matches(rule_no_condition, G; init...) @@ -172,12 +170,11 @@ end ############################################################# L = apex(terminal(Graph)) K = R = Graph(1) -l = homomorphism(K,L) -r = homomorphism(K,R) +l, r = homomorphism.(Ref(K), [L, R]) L′ = L ⊕ L K′ = K ⊕ L -tl = homomorphism(L,L′) -tk = homomorphism(K,K′) +tl = homomorphism(L, L′; initial=(V=[1],)) +tk = ACSetTransformation(K,K′; V=[1]) l′ = homomorphism(K′,L′; initial=(V=[1,2],)) rule = PBPORule(l,r,tl,tk,l′) @@ -197,7 +194,7 @@ l = homomorphism(K,L) r = homomorphism(K,R) L′ = @acset Graph begin V=2; E=3; src=[1,2,2]; tgt=[1,2,1] end K′ = @acset Graph begin V=2; E=2; src=[2,2]; tgt=[2,1] end -tl = homomorphism(L,L′) +tl = homomorphism(L,L′; initial=(V=[1],)) tk = ACSetTransformation(K,K′; V=[1]) l′ = homomorphism(K′,L′; initial=(V=[1,2],)) rule = PBPORule(l,r,tl,tk,l′) @@ -213,12 +210,12 @@ expected = @acset Graph begin V=3; E=4; src=[1,2,1,2]; tgt=[1,2,2,3] end L = @acset WG begin V=2; E=1; Weight=1; src=1; tgt=2; weight=[AttrVar(1)] end K = WG(2) R = WG(1) -l = homomorphism(K, L; monic=true) +l = homomorphism(K, L; initial=(V=[1,2],)) r = homomorphism(K, R) L′ = @acset WG begin V=4; E=10; Weight=10; src=[1,1,2,3,3,3,3,4,4,4]; tgt=[2,4,4,1,4,3,2,2,3,4]; weight=AttrVar.(1:10) end -tl = homomorphism(L, L′) +tl = homomorphism(L, L′; initial=(V=[1,2],)) K′ = @acset WG begin V=4; E=9; Weight=9; src=[1,2,3,3,3,3,4,4,4]; tgt=[4,4,1,4,3,2,2,3,4]; weight=AttrVar.(1:9) end @@ -237,7 +234,7 @@ ac = AppCond(homomorphism(L,loop), false) # cannot bind pattern to loop [ • ] """ -lc = LiftCond(homomorphism(R, L), # vertical +lc = LiftCond(homomorphism(R, L; initial=(V=[1],)), # vertical homomorphism(L, L′; initial=(E=[4],))) kx = Any[fill(nothing, 9)...] @@ -251,13 +248,13 @@ expected = @acset WG begin V=4; E=6; src=[2,2,2,3,3,4]; tgt=[1,3,4,1,1,1]; weight=[6., 5., 6., 8., 7., 9.] end -init = Dict(:V => [1, 2]) => Dict() +initial = Dict(:V => [1, 2]) -@test length(get_matches(rule, G; initial=init))==1 +@test length(get_matches(rule, G; initial))==1 @test isempty(homomorphisms(codom(left(rule)), G; monic=true)) -@test only(get_matches(rule, G; initial=init)) == get_match(rule, G;initial=init) -@test is_isomorphic(expected, rewrite(rule, G; initial=init)) +@test only(get_matches(rule, G; initial)) == get_match(rule, G;initial) +@test is_isomorphic(expected, rewrite(rule, G; initial)) # Test canonization: TODO diff --git a/test/rewrite/Representable.jl b/test/rewrite/Representable.jl index ca5f72a..0567c9f 100644 --- a/test/rewrite/Representable.jl +++ b/test/rewrite/Representable.jl @@ -1,8 +1,6 @@ module TestRepresentable -using Test -using AlgebraicRewriting, DataMigrations -using Catlab.Graphs, Catlab.CategoricalAlgebra, Catlab.Programs +using Test, AlgebraicRewriting, DataMigrations, Catlab yWG = yoneda_cache(WeightedGraph{Float64}; clear=true); @@ -42,10 +40,10 @@ r = Rule(d, yWG; semantics=:SPO, expr=(Weight=[vs->0.],), monic=true) G = path_graph(WeightedGraph{Float64}, 2) add_edges!(G, [2,2], [2,2]) G[:weight] = [-1.,10,10] -m = get_match(r, G) +m = get_matches(r, G)[1] expected = @acset WeightedGraph{Float64} begin V=3; E=2; src=[1,2]; tgt=[2,3]; weight=[-1.,0.] end -@test is_isomorphic(rewrite(r, G), expected) +@test is_isomorphic(rewrite_match(r, m), expected) end # module diff --git a/test/rewrite/SPO.jl b/test/rewrite/SPO.jl index 37d02fa..4a20876 100644 --- a/test/rewrite/SPO.jl +++ b/test/rewrite/SPO.jl @@ -1,18 +1,17 @@ module TestSPO -using Test -using Catlab, Catlab.Graphs, Catlab.CategoricalAlgebra -using AlgebraicRewriting +using Test, Catlab, AlgebraicRewriting # Removing edges #--------------- p2, g2 = path_graph(Graph, 2), Graph(2) -f = homomorphism(g2, p2; monic=true) +f = homomorphism(g2, p2; initial=(V=1:2,)) r = Rule{:SPO}(f, id(g2)) r2 = Rule{:SPO}(create(Graph(1)), id(Graph())) @test rewrite(r, p2) == Graph(2) -@test rewrite(r2, p2) == Graph(1) +m = get_match(r2, p2) +@test rewrite_match(r2, m) == Graph(1) @@ -41,12 +40,12 @@ spr = rewrite_match(Rule{:SPO}(ka,kb), ac) # Semisimplicial sets ##################### @present ThSemisimplicialSet(FreeSchema) begin -(V,E,T) :: Ob -(d1,d2,d3)::Hom(T,E) -(src,tgt) :: Hom(E,V) -compose(d1, src) == compose(d2, src) -compose(d1, tgt) == compose(d3, tgt) -compose(d2, tgt) == compose(d3, src) + (V,E,T) :: Ob + (d1,d2,d3)::Hom(T,E) + (src,tgt) :: Hom(E,V) + compose(d1, src) == compose(d2, src) + compose(d1, tgt) == compose(d3, tgt) + compose(d2, tgt) == compose(d3, src) end @acset_type SSet(ThSemisimplicialSet) @@ -61,37 +60,37 @@ end L = quadrangle # We defined quadrilateral above. I = @acset SSet begin -E=4; V=4 -src=[1,1,2,3] -tgt=[2,3,4,4] + E=4; V=4 + src=[1,1,2,3] + tgt=[2,3,4,4] end R = @acset SSet begin -T=2; E=5; V=4 -d1=[2,3] -d2=[1,5] -d3=[5,4] -src=[1,1,2,3,2] -tgt=[2,3,4,4,3] + T=2; E=5; V=4 + d1=[2,3] + d2=[1,5] + d3=[5,4] + src=[1,1,2,3,2] + tgt=[2,3,4,4,3] end edge = @acset SSet begin E=1; V=2; src=[1]; tgt=[2] end Tri = @acset SSet begin -T=1; E=3; V=3; -d1=[1]; d2=[2]; d3=[3]; -src=[1,1,2]; tgt=[3,2,3] + T=1; E=3; V=3; + d1=[1]; d2=[2]; d3=[3]; + src=[1,1,2]; tgt=[3,2,3] end r = Rule{:SPO}(homomorphisms(edge, Tri)[2], id(edge)) r_dpo = Rule(r.L, r.R) -m = homomorphism(Tri, quadrangle) +m = homomorphism(Tri, quadrangle; initial=(V=[1,2,4],)) # This does not make sense for DPO @test !can_pushout_complement(ComposablePair(r.L, m)) @test_throws ErrorException rewrite_match_maps(r_dpo, m; check=true) -@test is_isomorphic(rewrite_match(r,m), - @acset SSet begin E=2; V=3; src=1; tgt=[2,3] end) +@test is_isomorphic(rewrite_match(r, m), + @acset SSet begin E=2; V=3; src=1; tgt=[2,3] end) # Attributed rewrite #------------------- diff --git a/test/rewrite/SqPO.jl b/test/rewrite/SqPO.jl index 47d7c60..4ca1b32 100644 --- a/test/rewrite/SqPO.jl +++ b/test/rewrite/SqPO.jl @@ -1,9 +1,7 @@ module TestSqPO -using Test -using Catlab, Catlab.Graphs, Catlab.CategoricalAlgebra -using AlgebraicRewriting +using Test, Catlab, AlgebraicRewriting using AlgebraicRewriting.Rewrite.SqPO: final_pullback_complement # Sesqui Pushout Tests diff --git a/test/schedules/Eval.jl b/test/schedules/Eval.jl index 80ab366..e398600 100644 --- a/test/schedules/Eval.jl +++ b/test/schedules/Eval.jl @@ -42,7 +42,7 @@ N["•→•"] = ar Dot, A = Symbol.([N[g1],N[ar]]) av = RuleApp(:add_vertex, Rule(id(z), create(g1))) -g2ar = homomorphism(g2, ar; monic=true) +g2ar = homomorphism(g2, ar; initial=(V=1:2,)) de = loop_rule(RuleApp(:del_edge, Rule(g2ar, id(g2)))) coin = uniform(2, z) sched = coin ⋅ (tryrule(av) ⊗ id([z])) ⋅ merge_wires(z) ⋅ de @@ -194,7 +194,8 @@ inc_E_ = @acset LG begin Cell=2; V=6; E=7; Life=1; Eng=2 live=[true,AttrVar(1)]; eng=AttrVar.(1:2) end inc_E = Rule(id(inc_E_), id(inc_E_); expr=(Eng=[es->es[1],es->es[2]+1],)) -inc_E_rule = RuleApp(:incE, inc_E, homomorphism(Cell, inc_E_)) |> tryrule +inc_E_rule = RuleApp( + :incE, inc_E, homomorphism(Cell, inc_E_; initial=(V=[1,2,4,5],))) |> tryrule # Assemble a schedule sched = agent(inc_E_rule, Cell, ret=Cell)