-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
240 lines (205 loc) · 7.29 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/**
* shark - Mapping-free filtering of useless RNA-Seq reads
* Copyright (C) 2019 Tamara Ceccato, Luca Denti, Yuri Pirola, Marco Previtali
*
* This file is part of shark.
*
* shark is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* shark is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with shark; see the file LICENSE. If not, see
* <https://www.gnu.org/licenses/>.
**/
#include <iostream>
#include <fstream>
#include <algorithm>
#include <string>
#include <vector>
#include <thread>
#include <zlib.h>
#include "kseq.h"
KSEQ_INIT(gzFile, gzread)
#include "common.hpp"
#include "argument_parser.hpp"
#include "bloomfilter.h"
#include "BloomfilterFiller.hpp"
#include "KmerBuilder.hpp"
#include "FastaSplitter.hpp"
#include "FastqSplitter.hpp"
#include "ReadAnalyzer.hpp"
#include "ReadOutput.hpp"
#include "kmer_utils.hpp"
using namespace std;
auto start_t = chrono::high_resolution_clock::now();
void pelapsed(const string &s = "") {
auto now_t = chrono::high_resolution_clock::now();
cerr << "[shark/" << s << "] Time elapsed "
<< chrono::duration_cast<chrono::milliseconds>(now_t - start_t).count()/1000
<< endl;
}
void reference_1st_pass(FastaSplitter& fs, KmerBuilder& kb, BloomfilterFiller& bff) {
while (true) {
vector<pair<string, string>>* r_fs = fs();
if (r_fs == nullptr) return;
vector<uint64_t>* r_kb = kb(r_fs);
bff(r_kb);
}
}
void read_analysis(FastqSplitter& fs, ReadAnalyzer& ra, ReadOutput& ro) {
FastqSplitter::output_t reads;
ReadAnalyzer::output_t associations;
while (true) {
fs(reads);
if (reads.empty()) return;
ra(reads, associations);
ro(associations);
reads.clear();
associations.clear();
}
}
/*****************************************
* Main
*****************************************/
int main(int argc, char *argv[]) {
parse_arguments(argc, argv);
/*** 0. Check input files and initialize variables **************************/
// Transcripts
gzFile ref_file = gzopen(opt::fasta_path.c_str(), "r");
kseq_t *seq = kseq_init(ref_file);
kseq_destroy(seq);
gzclose(ref_file);
// Sample 1
gzFile read1_file = gzopen(opt::sample1_path.c_str(), "r");
seq = kseq_init(read1_file);
kseq_destroy(seq);
gzclose(read1_file);
// Sample 2
gzFile read2_file = nullptr;
if(opt::paired_flag) {
read2_file = gzopen(opt::sample2_path.c_str(), "r");
seq = kseq_init(read2_file);
kseq_destroy(seq);
gzclose(read2_file);
}
BF bloom(opt::bf_size);
vector<string> legend_ID;
legend_ID.reserve(100);
int seq_len;
if(opt::verbose) {
cerr << "Reference texts: " << opt::fasta_path << endl;
cerr << "Sample 1: " << opt::sample1_path << endl;
if(opt::paired_flag)
cerr << "Sample 2: " << opt::sample2_path << endl;
cerr << "K-mer length: " << opt::k << endl;
cerr << "Threshold value: " << opt::c << endl;
cerr << "Only single associations: " << (opt::single ? "Yes" : "No") << endl;
cerr << "Minimum base quality: " << static_cast<int>(opt::min_quality) << endl;
cerr << endl;
}
/****************************************************************************/
/*** 1. First iteration over transcripts ************************************/
{
ref_file = gzopen(opt::fasta_path.c_str(), "r");
kseq_t *refseq = kseq_init(ref_file);
FastaSplitter fs(refseq, 100, &legend_ID);
KmerBuilder kb(opt::k);
BloomfilterFiller bff(&bloom);
std::vector<std::thread> threads;
while (static_cast<int>(threads.size()) < opt::nThreads)
threads.emplace_back(reference_1st_pass, std::ref(fs), std::ref(kb), std::ref(bff));
for (auto& t: threads)
t.join();
kseq_destroy(refseq);
gzclose(ref_file);
}
pelapsed("Transcript file processed");
bloom.switch_mode(1);
pelapsed("First switch performed");
/****************************************************************************/
\
/*** 2. Second iteration over transcripts ***********************************/
ref_file = gzopen(opt::fasta_path.c_str(), "r");
seq = kseq_init(ref_file);
int nidx = 0;
// open and read the .fa, every time a kmer is found the relative index is
// added to BF
vector<uint64_t> kmers;
while ((seq_len = kseq_read(seq)) >= 0) {
kmers.clear();
if ((uint)seq_len >= opt::k) {
int _p = 0;
uint64_t kmer = build_kmer(seq->seq.s, _p, opt::k);
if(kmer == (uint64_t)-1) continue;
uint64_t rckmer = revcompl(kmer, opt::k);
kmers.push_back(min(kmer, rckmer));
for (int p = _p; p < seq_len; ++p) {
uint8_t new_char = to_int[seq->seq.s[p]];
if(new_char == 0) { // Found a char different from A, C, G, T
++p; // we skip this character then we build a new kmer
kmer = build_kmer(seq->seq.s, p, opt::k);
if(kmer == (uint64_t)-1) break;
rckmer = revcompl(kmer, opt::k);
--p; // p must point to the ending position of the kmer, it will be incremented by the for
} else {
--new_char; // A is 1 but it should be 0
kmer = lsappend(kmer, new_char, opt::k);
rckmer = rsprepend(rckmer, reverse_char(new_char), opt::k);
}
kmers.push_back(min(kmer, rckmer));
}
bloom.add_to_kmer(kmers, nidx);
}
++nidx;
}
kseq_destroy(seq);
gzclose(ref_file);
pelapsed("BF created from transcripts (" + to_string(nidx) + " genes)");
bloom.switch_mode(2);
pelapsed("Second switch performed");
/****************************************************************************/
/*** 3. Iteration over the sample *****************************************/
{
kseq_t *sseq1 = nullptr, *sseq2 = nullptr;
FILE *out1 = nullptr, *out2 = nullptr;
read1_file = gzopen(opt::sample1_path.c_str(), "r");
sseq1 = kseq_init(read1_file);
if (opt::out1_path != "") {
out1 = fopen(opt::out1_path.c_str(), "w");
}
if(opt::paired_flag) {
read2_file = gzopen(opt::sample2_path.c_str(), "r");
sseq2 = kseq_init(read2_file);
if (opt::out2_path != "") {
out2 = fopen(opt::out2_path.c_str(), "w");
}
}
FastqSplitter fs(sseq1, sseq2, 50000, opt::min_quality, out1 != nullptr);
ReadAnalyzer ra(&bloom, legend_ID, opt::k, opt::c, opt::single);
ReadOutput ro(out1, out2);
std::vector<std::thread> threads;
while (static_cast<int>(threads.size()) < opt::nThreads)
threads.emplace_back(read_analysis, std::ref(fs), std::ref(ra), std::ref(ro));
for (auto& t: threads)
t.join();
kseq_destroy(sseq1);
gzclose(read1_file);
if(opt::paired_flag) {
kseq_destroy(sseq2);
gzclose(read2_file);
}
if (out1 != nullptr) fclose(out1);
if (out2 != nullptr) fclose(out2);
}
pelapsed("Sample completed");
/****************************************************************************/
pelapsed("Association done");
return 0;
}