-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
304 lines (266 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import argparse
import json
import time
import logging
from tqdm import tqdm
from src.searcher import search
from src.reader import read_pages
from src.questioner import ask_news_question, question_exampler
from src.rewriter import rewrite_query
from src.timeline_generator import generate_timeline, merge_timeline
from tilse.data.timelines import Timeline as TilseTimeline
from tilse.data.timelines import GroundTruth as TilseGroundTruth
from tilse.evaluation import rouge
from datetime import datetime
from evaluation import get_scores, evaluate_dates, get_average_results
from news_keywords import TARGET_KEYWORDS
from pprint import pprint
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--max_round', type=int, default=5, help='Rounds of Question')
parser.add_argument('--model_name', type=str, default='qwen2.5-72b-instruct', help='Model')
parser.add_argument('--dataset', type=str, choices=['open', 'crisis', 't17'], default='open', help='Dataset used')
parser.add_argument('--rewrite_baseline', action='store_true')
parser.add_argument('--question_exs', action='store_true')
parser.add_argument('--output', type=str, default='outputs')
args = parser.parse_args()
MAX_ROUNDS = args.max_round
def save_json(data, file_path):
if args.rewrite_baseline:
with open(file_path.replace('.json', '-rewrite.json'), 'w') as file:
json.dump(data, file, indent=2, ensure_ascii=False)
else:
with open(file_path.replace('.json', '.json'), 'w') as file:
json.dump(data, file, indent=2, ensure_ascii=False)
def generate(input_text, model, num_dates=9999, search_engine='bing', n_max_query=6, n_max_doc=30, freshness=''):
for _ in range(2):
try:
news_timeline = []
news_timeline_all = []
dates_all = set()
####### News Context Retrieval #######
if search_engine != 'bing':
doc_list_all = search([input_text + ' timeline'], n_max_doc, search_engine)
else:
doc_list_all = search([input_text], n_max_doc, search_engine, freshness)
# pprint(doc_list_all)
doc_list_all = read_pages(doc_list_all)
news_timeline = []
gen_cnt = 0
while not news_timeline:
news_timeline = generate_timeline(model=model, news=input_text, docs=doc_list_all) # generate timeline
print(news_timeline)
if not news_timeline:
time.sleep(5)
gen_cnt += 1
print("Generating times: ", gen_cnt)
if gen_cnt > 5:
break
news_timeline_all += news_timeline
for ts in news_timeline:
dates_all.add(ts['start'])
print(f'Reference Timeline dates number: {num_dates}')
print(f'Current Timeline dates number: {len(dates_all)}')
####### Iterative Self-Questioning #######
question_list_all = []
rewrite_time, search_time, generate_time, read_time = 0, 0, 0, 0
if args.question_exs:
question_examples = question_exampler(input_text, 3)
else:
question_examples = []
for i in range(MAX_ROUNDS):
tic0 = tic = time.time()
question_list = []
cnt = 0
while question_list == []:
question_list = ask_news_question(model=model, news=input_text, docs=doc_list_all[-150:], questions=question_list_all, examples=question_examples) # question-based news background decomposition
cnt += 1
if cnt > 10:
doc_list_all = doc_list_all[10:]
print('Stop generating new questions')
break
question_time = time.time() - tic
tic = time.time()
query_list = {}
queries = []
print(f'Round {i} Question List: {question_list}')
for question in question_list:
query_gen = []
print(question)
while query_gen == []:
query_gen = rewrite_query(question, n_max_query, model=model)
# query_gen = [question] # w/o rewrite
if query_gen:
print(query_gen)
query_list[question] = list(set(query_gen))
queries += query_gen
question_list_all += queries
rewrite_time += time.time() - tic
tic = time.time()
if search_engine != 'bing':
doc_list = search(list(set(queries)), n_max_doc, search_engine)
else:
doc_list = search(list(set(queries)), n_max_doc, search_engine, freshness)
search_time += time.time() - tic
doc_list_curr_iter = []
for d in doc_list:
if d not in doc_list_curr_iter and d not in doc_list_all:
doc_list_curr_iter.append(d)
doc_list_curr_iter = [d for d in doc_list_curr_iter]
if search_engine == 'bing':
doc_list_curr_iter = read_pages(doc_list_curr_iter)
for doc in doc_list_curr_iter:
if doc['url'] in [d['url'] for d in doc_list_all]:
continue
if input_text.lower() in doc['title'].lower() or input_text.lower() in doc['snippet'].lower():
doc_list_all.append(doc)
else:
flag = True
for keyword in input_text.split(" "):
if keyword.lower() not in doc['title'].lower() and keyword.lower() not in doc['snippet'].lower():
flag = False
break
if flag:
doc_list_all.append(doc)
else:
for doc in doc_list_curr_iter:
if doc not in doc_list_all:
doc_list_all.append(doc)
print(len(doc_list_all))
news_timeline = []
gen_cnt = 0
tic = time.time()
while not news_timeline:
news_timeline = generate_timeline(model=model, news=input_text, docs=doc_list_curr_iter) # generate timeline
print(news_timeline)
if not news_timeline:
time.sleep(5)
gen_cnt += 1
print("Generating times: ", gen_cnt)
if gen_cnt > 5:
break
news_timeline_all += news_timeline
for ts in news_timeline:
dates_all.add(ts['start'])
print(f'Reference Timeline dates number: {num_dates}')
print(f'Current Timeline dates number: {len(dates_all)}')
generate_time += time.time() - tic
save_json(question_list_all + doc_list_all, os.path.join(f'{args.output}/docs', f"{input_text.replace(' ', '_').replace('/', '')}-{model}-{MAX_ROUNDS}.json"))
return news_timeline_all
except Exception as e:
logging.warning(f'Error: {e}, retrying...')
time.sleep(1)
logging.error('Failed generating response!')
return []
def evaluate(dataset, model='gpt-3.5-turbo'):
metric = 'all'
results = []
overall_results = {}
time_all = 0
for keyword, query, index in tqdm(TARGET_KEYWORDS[dataset]):
with open(f'data/{dataset}/{keyword}/timelines.jsonl', 'r') as f:
gt_timelines = []
for tl in f:
tl = eval(tl.strip('\n'))
if tl:
gt = {}
for ts, event in tl:
ts = ts.replace(' ', '')
if ts.count('-') == 2:
ts = datetime.strptime(ts, '%Y-%m-%dT00:00:00').date()
elif ts.count('-') == 1:
ts = datetime.strptime(ts, '%Y-%mT00:00:00').date()
else:
ts = datetime.strptime(ts, '%YT00:00:00').date()
gt[ts] = event
gt_timelines.append(gt)
# Evaluate summarization
ground_truth = TilseGroundTruth([TilseTimeline(g) for g in gt_timelines])
num_dates = len(ground_truth.get_dates())
begin_time = time.time()
if dataset in ['crisis', 't17']:
predicts = generate(query, model, num_dates=num_dates, search_engine=f"{dataset} {keyword}")
else:
predicts = generate(query, model, num_dates=num_dates, freshness=keyword.split('_')[-1].replace('.', '-'))
time_all += time.time() - begin_time
####### Merge Timelines #######
pred_timeline = {}
for tl in predicts:
try:
ts, event = tl['start'], tl['summary']
if ts.count('-') == 2:
ts = datetime.strptime(ts, '%Y-%m-%d').date()
elif ts.count('-') == 1:
ts = datetime.strptime(ts, '%Y-%m').date()
else:
ts = datetime.strptime(ts, '%Y').date()
if ts not in pred_timeline:
pred_timeline[ts] = [event]
else:
pred_timeline[ts].append(event)
except: # wrong timestamp format, discard it
pass
sorted_pred_timeline = dict(sorted(pred_timeline.items(), key=lambda item: len(item[1]), reverse=True))
if MAX_ROUNDS > 1:
try:
predicts = []
predicts = merge_timeline(model=model, news=query, num_dates=num_dates, timelines=pred_timeline)
except:
pass
print(predicts)
if predicts:
pred_timeline = {}
for tl in predicts:
try:
ts, event = tl['start'], tl['summary']
if ts.count('-') == 2:
ts = datetime.strptime(ts, '%Y-%m-%d').date()
elif ts.count('-') == 1:
ts = datetime.strptime(ts, '%Y-%m').date()
else:
ts = datetime.strptime(ts, '%Y').date()
if ts not in pred_timeline:
pred_timeline[ts] = [event]
else:
pred_timeline[ts].append(event)
except: # wrong timestamp format, discard it
pass
if len(pred_timeline) != num_dates:
all_dates = list(pred_timeline.keys())
all_dates.sort(reverse=True)
while len(pred_timeline) < num_dates and all_dates:
date_to_add = all_dates.pop(0)
if date_to_add not in pred_timeline:
pred_timeline[date_to_add] = sorted_pred_timeline[date_to_add]
save_timeline = []
for s,e in pred_timeline.items():
save_timeline.append({'start': s.strftime('%Y-%m-%d'), 'events': e})
save_timeline = sorted(save_timeline, key=lambda x:x['start'])
print(len(pred_timeline))
pred_timeline = TilseTimeline(pred_timeline)
evaluator = rouge.TimelineRougeEvaluator(measures=["rouge_1", "rouge_2"])
try:
rouge_scores = get_scores(metric, pred_timeline, ground_truth, evaluator)
date_scores = evaluate_dates(pred_timeline, ground_truth)
timeline_res = (rouge_scores, date_scores, pred_timeline)
pprint(timeline_res)
results.append(timeline_res)
if keyword not in overall_results:
overall_results[keyword] = {"rouge": rouge_scores, "date_score": date_scores, "predict-timeline": save_timeline}
save_json(overall_results[keyword], os.path.join(f'{args.output}/timelines', f"{dataset}-{model}-{keyword}-{MAX_ROUNDS}.json"))
except:
print("=======Evaluation Error=======")
pprint(save_timeline)
avg_res = get_average_results(results)
save_json({'res': avg_res, 'time': time_all / 3600}, os.path.join(args.output, f"{dataset}-{model}-{MAX_ROUNDS}-avg_score.json"))
pprint(avg_res)
return avg_res
if __name__ == '__main__':
if not os.path.exists(args.output):
os.makedirs(args.output)
if not os.path.exists(f'{args.output}/docs'):
os.makedirs(f'{args.output}/docs')
if not os.path.exists(f'{args.output}/timelines'):
os.makedirs(f'{args.output}/timelines')
evaluate(args.dataset, args.model_name)