forked from OliverHxh/GaitPart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
80 lines (67 loc) · 2.87 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from datetime import datetime
import numpy as np
import argparse
from model.initialization import initialization
from model.utils import evaluation
from config import conf
def boolean_string(s):
if s.upper() not in {'FALSE', 'TRUE'}:
raise ValueError('Not a valid boolean string')
return s.upper() == 'TRUE'
parser = argparse.ArgumentParser(description='Test')
parser.add_argument('--iter', default='80000', type=int,
help='iter: iteration of the checkpoint to load. Default: 80000')
parser.add_argument('--batch_size', default='1', type=int,
help='batch_size: batch size for parallel test. Default: 1')
parser.add_argument('--cache', default=False, type=boolean_string,
help='cache: if set as TRUE all the test data will be loaded at once'
' before the transforming start. Default: FALSE')
opt = parser.parse_args()
# Exclude identical-view cases
def de_diag(acc, each_angle=False):
result = np.sum(acc - np.diag(np.diag(acc)), 1) / 10.0
if not each_angle:
result = np.mean(result)
return result
m = initialization(conf, test=opt.cache)[0]
# load model checkpoint of iteration opt.iter
print('Loading the model of iteration %d...' % opt.iter)
m.load(opt.iter)
print('Transforming...')
time = datetime.now()
test = m.transform('test', opt.batch_size)
print('Evaluating...')
acc = evaluation(test, conf['data'])
print('Evaluation complete. Cost:', datetime.now() - time)
# Print rank-1 accuracy of the best model
# e.g.
# ===Rank-1 (Include identical-view cases)===
# NM: 95.405, BG: 88.284, CL: 72.041
for i in range(1):
print('===Rank-%d (Include identical-view cases)===' % (i + 1))
print('NM: %.3f,\tBG: %.3f,\tCL: %.3f' % (
np.mean(acc[0, :, :, i]),
np.mean(acc[1, :, :, i]),
np.mean(acc[2, :, :, i])))
# Print rank-1 accuracy of the best model,excluding identical-view cases
# e.g.
# ===Rank-1 (Exclude identical-view cases)===
# NM: 94.964, BG: 87.239, CL: 70.355
for i in range(1):
print('===Rank-%d (Exclude identical-view cases)===' % (i + 1))
print('NM: %.3f,\tBG: %.3f,\tCL: %.3f' % (
de_diag(acc[0, :, :, i]),
de_diag(acc[1, :, :, i]),
de_diag(acc[2, :, :, i])))
# Print rank-1 accuracy of the best model (Each Angle)
# e.g.
# ===Rank-1 of each angle (Exclude identical-view cases)===
# NM: [90.80 97.90 99.40 96.90 93.60 91.70 95.00 97.80 98.90 96.80 85.80]
# BG: [83.80 91.20 91.80 88.79 83.30 81.00 84.10 90.00 92.20 94.45 79.00]
# CL: [61.40 75.40 80.70 77.30 72.10 70.10 71.50 73.50 73.50 68.40 50.00]
np.set_printoptions(precision=2, floatmode='fixed')
for i in range(1):
print('===Rank-%d of each angle (Exclude identical-view cases)===' % (i + 1))
print('NM:', de_diag(acc[0, :, :, i], True))
print('BG:', de_diag(acc[1, :, :, i], True))
print('CL:', de_diag(acc[2, :, :, i], True))