forked from UWARG/autonomy-bootcamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
171 lines (129 loc) · 5.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
This is a starter file to get you going. You may also include other files if you feel it's necessary.
Make sure to follow the code convention described here:
https://github.com/UWARG/computer-vision-python/blob/main/README.md#naming-and-typing-conventions
Hints:
* The internet is your friend! Don't be afraid to search for tutorials/intros/etc.
* We suggest using a convolutional neural network.
* TensorFlow Keras has the CIFAR-10 dataset as a module, so you don't need to manually download and unpack it.
"""
# Import whatever libraries/modules you need
import torch #imports PyTorch
import torchvision #imports for Pytorch to deal with imagees
import torchvision.transforms as transforms #imports for Pytorch to transform pixels
import torch.nn as nn #neural networks layers, and parent functions of Pytorch
import torch.nn.functional as F #for activiation layers in neural network
import torch.optim as optim #import for loss function and optimization
import matplotlib.pyplot as plt
import numpy as np
# Your working code here
# my cuda version is too new for pytorch pain peko
# set device to cuda (ex. nvidia gpu) as it will compute faster
print (torch.cuda.is_available())
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# model = torchvision. CIFAR10().to(device)
# model.to(device)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
#set hyperparameters as constant
BATCH_SIZE = 32
EPOCH = 15
LEARNING_RATE = 0.001
MOMENTUM = 0.9
#create training set to train model
#set is shuffled to evenly distribute image types
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE,
shuffle=True)
#create test set to test trained model
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE,
shuffle=False)
#create classes
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#create neural network
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
#define loss function
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=LEARNING_RATE, momentum=MOMENTUM)
#train network
for i in range(EPOCH): # loops whole dataset epoch times
running_loss = 0.0
for data in trainloader:
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{EPOCH + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
#displays loss
display_loss = running_loss/len(trainloader)
print(display_loss)
print('Finished Training')
#save trained model
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
#test on dataset
dataiter = iter(testloader)
images, labels = next(dataiter)
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
#print accuracy of network for each class
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
# again no gradients needed
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[classes[label]] += 1
total_pred[classes[label]] += 1
# print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')