Skip to content

Latest commit

 

History

History
71 lines (50 loc) · 1.93 KB

README.md

File metadata and controls

71 lines (50 loc) · 1.93 KB

Road-sign-detection using YOLO-v5

Description

YOLOv5 is a family of object detection architectures and models pretrained on the COCO dataset.

Fails to load try using Jupyter notebook

Getting Started

Dependencies

  • YOLOv5
  • Pytorch

Creating Dataset

  • Import dataset in Roboflow
  • Do data preprocessing (Splitting data, Data Augementation) using Roboflow API
  • Export generated dataset in YOLOv5 format using API key or download it.

Model creation and testing

Quick testing

  • Download pretrained weights Pretrained_weights/best.pt
  • Clone YOLOv5 repository
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
python detect.py --weights best.pt --source image.png

Training

  • Clone this repository
git clone https://github.com/Anant-mishra1729/Road-sign-detection.git
cd Road-sign-detection
python detect.py --weights best.pt --source image.png
  • Clone YOLOv5 repository
git clone https://github.com/ultralytics/yolov5
cd yolov5
  • Use Updated_YOLOv5_Road_sign_detection.ipynb for creating model.
  • Store best.pt for future inference.

In case of any issue or error go through Yolov5 documentation.

Result

Authors

  • Anant Mishra

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments