-
Notifications
You must be signed in to change notification settings - Fork 0
/
clusters.Rmd
292 lines (213 loc) · 11.2 KB
/
clusters.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
---
title: "Clusters"
output:
html_document:
toc: true
toc_float:
collapsed: true
---
<br>
In this section we continue to ask questions about the distribution of Plasmodesmata (or similar types of annotations along a given model). We continue to use the output of the *SpatialControlPoints* plugin shown in the [Distributions section](#distributions.html). Since we detected a bias in the distribution of Plasmodesmata, strongly hinting at the presence of spatial clustering, we now ask: **Can we quantify parameters relating to these clusters, such as their number**
<br>
# Exploring the data
```{r, include = FALSE}
# THIS SECTION IS HIDDEN AND ONLY REQUIRED BECAUSE KNITTING TREATS R MARKDOWNS INDEPENDENTLY so it is not possible to call variables present in another markdown
# we need to re-create the Col_real object
library(tidyverse)
setwd('./Data_individual_cells')
Col_real <- list.files(path = ".", pattern = "Ann.csv") %>%
map_df(function(f){
print(f)
x <- read_csv(f) %>%
as.data.frame %>%
# we need to select only the columns where the coordinates were recalculated relative to the bounding box
subset(select = c(LabelPositionXunits, LabelPositionYunits, LabelPositionZunits)) %>%
# for compatibility with the Col_simulated we need to have the same labels on the columns
rename("X_units"="LabelPositionXunits") %>%
rename("Y_units"="LabelPositionYunits") %>%
rename("Z_units"="LabelPositionZunits") %>%
mutate(Genotype = "Col-0") %>%
mutate(DatasetFilename = f) %>%
mutate(Interface = "PPP-EN") %>%
# we add a fake column for iteration - this is important to be able to merge this object with Col_simul
mutate(IterationNumber = "real")
})
Col_real$DatasetFilename <- gsub("_Ann.csv", "", Col_real$DatasetFilename)
# we also set the general plotting theme
# where we need to deviate from this it is shown in the code
theme_set(
theme_bw() +
theme(axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
strip.text.x = element_text(size = 15),
legend.title = element_text(size = 15),
legend.text = element_text(size = 15))
)
```
<br>
```{r, message = FALSE, warning= FALSE}
library(tidyverse)
library(factoextra)
# we are only going to use the coordinates of the real points in this case so we start from the Col_real object
# please note that this object is being carried over from the analysis that was performed in previous sections
# we need to look at each cell individually before we run the function described later on
# we filter the original file and we split the larger file into smaller datasets corresponding to different roots for example (easier to handle).
# we are going to duplicate the dataset column first (similar to what was done for the Col_0 object in previous section)
Col_real$Cell = Col_real$DatasetFilename
#in the dataset filename column we remove anything after _DNN
Col_real$DatasetFilename <- gsub("_PPP.*","", Col_real$DatasetFilename)
# in the column cell we remove anything before the name of the cell
Col_real$Cell <- gsub(".*PPP", "PPP", Col_real$Cell)
root_1 <- Col_real %>% filter(DatasetFilename == "170314_Col_HD_R20_339-381um_DNN")
root_2 <- Col_real %>% filter(DatasetFilename == "170821_Col_HD_R01_294-317um_DNN")
#FOLLOW THE ORDER IN THE FILE in which the cells are listed in the object file as the function used later follows such pattern!
PPP1_EN <- filter(root_1, Cell == "PPP1-EN")
# the same should be done for PPP1-Ena, PPP2-EN, PPP2-ENa)
# and then the same again for the second root
#The following piece of code has been copied from
# http://www.sthda.com/english/articles/29-cluster-validation-essentials/96-determining-the-optimal-number-of-clusters-3-must-know-methods/
# Silhouette method
fviz_nbclust(PPP1_EN[,c("X_units", "Y_units", "Z_units")], kmeans, method = "silhouette", nstart = 100, k.max=20) +
labs(subtitle = "Silhouette method")
# this suggests 11 clusters based on the visual graph (dashed line)
#nstart is important as it repeats x times the initial random placement of the seeds, which can severely affect the definition of clusters
#kmax defines the maximum number of clusters, by default it is 10. Here we limit it below 20 as we belive it to be a reasonable number for the biological process being studied
# the problem is we can't store the plot output of the fviz_nbclust so we need to annotate the number of clusters
#root1
#11 PPP1-EN
#20 PPP1-ENa
#6 PPP2-EN
#13 PPP2-ENa
#root 2
#6 PPP1-EN
#8 PPP1a-EN
#20 PPP2-EN
#12 PPP2a-EN
# Assigning resulting best cluster value and see how it looks
# this can useful
# Run k-means clustering first
my_kmeans <- kmeans(PPP1_EN[,c("X_units", "Y_units", "Z_units")], 11, nstart = 100)
#visualise the output
fviz_cluster(my_kmeans, data = PPP1_EN[,c("X_units", "Y_units", "Z_units")], main=FALSE, show.clust.cent=FALSE, geom="point") + theme_bw()
```
<br>
# Compiling the data
<br>
```{r, message = FALSE, warning= FALSE}
library(broom)
library(mclust)
# we create a function that will calculate the number of clusters and/or append them to the object. For the silhouette method, because we can't extract directly the number of cluster from the image the command generates we need to manually supply a vector k containing the values for the grouping (that is why we explored the data above).
# MAKE SURE VECTOR NUMBERS ARE IN THE ORDER OF THE DATASET NAMES IN THE FILE
#we also use a second method that is fully automated
run_clustering <- function(data, k){
# the first part does the silhouette method
kmeans_result <- data %>%
select(X_units, Y_units, Z_units) %>%
kmeans(k, nstart = 100) %>%
#augment is part of the broom package, attaches to the original data an output of whatever you did before
augment(data)
# the second part uses an alternative clustering method that was suggested here at https://www.r-bloggers.com/finding-optimal-number-of-clusters/
# it is based on Bayesian approaches (although not taking advantage of it)
# this can be automated in the function described below and does not require inspection of the data
# the method requires the mclust library
#CAREFUL IT CONTAINS A MAP FUNCTION THAT CLASHES WITH THE dpr one so detach it after use (see below)
mclust_result <- data %>%
select(X_units, Y_units, Z_units) %>%
#kmax defines the maximum number of clusters, by default 10
mclust::Mclust(G = 1:20) %>%
augment(kmeans_result)
return(mclust_result)
}
root_1_clust <- root_1 %>% as_tibble() %>%
group_by(DatasetFilename, Cell) %>%
nest() %>%
ungroup() %>%
#the latest version of tidyverse has introduced conservation of grouping in the nest function so we need to ungroup after that. Or alternatively nest directly without grouping nest(-DatasetFilename, -Cell), you nest everything but the grouping
mutate(k=c(11, 20, 6, 13)) %>%
mutate(kresult = map2(data, k, run_clustering)) %>%
select(-data) %>%
unnest(kresult)
root_2_clust <- root_2 %>% as_tibble() %>%
group_by(DatasetFilename, Cell) %>%
nest() %>%
ungroup() %>%
#the latest version of tidyverse has introduced conservation of grouping in the nest function so we need to ungroup after that. Or alternatively nest directly without grouping nest(-DatasetFilename, -Cell), you nest everything but the grouping
mutate(k = c(6,8,20,12)) %>%
mutate(kresult = map2(data, k, run_clustering)) %>%
select(-data) %>%
unnest(kresult)
#IMPORTANT, detach the library as it has function conflicts
detach(package:mclust, unload = TRUE)
# we now merge the two objects
clusters <- rbind(root_1_clust, root_2_clust)
```
<br>
# Determining median numbers of clusters per cell
<br>
```{r, message = FALSE, warning= FALSE}
#library(ggbeeswarm) called in the function so no need to load it
# we extract the number of clusters from the clusters object we generated
# the .cluster column contains the clustering output of the Silhouette method
clusters_sil <- clusters %>%
# get rows with distinct values of these variables (no duplicates)
distinct(Genotype, Interface, DatasetFilename, Cell, .cluster) %>%
# count how many rows for each of these two variables
count(Genotype, Interface, DatasetFilename, Cell) %>%
mutate(Method = "Silhouette")
# the .class column contains the clustering output of the mclust method
clusters_mc <- clusters %>%
# get rows with distinct values of these variables (no duplicates)
distinct(Genotype, Interface, DatasetFilename, Cell, .class) %>%
# count how many rows for each of these two variables
count(Genotype, Interface, DatasetFilename, Cell) %>%
mutate(Method = "Mclust")
clusters_count <- rbind(clusters_sil, clusters_mc)
clusters_count %>%
ggplot(aes(x= Method, y=n, colour= Genotype, fill= Genotype)) +
stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median,
geom = "crossbar", size = 0.5, width = 0.3, alpha=1) +
# we use shape = to characterise the points according to which root (datset they belong to)
ggbeeswarm::geom_quasirandom(data= clusters_count, aes(shape=DatasetFilename, group=Genotype), size= 4, alpha=0.5, width=0.1, show.legend = FALSE, dodge.width = 0.9) +
labs(y = "n of clusters per cell") +
scale_color_manual(values=c("#8B8B83")) +
scale_fill_manual(values=c("#8B8B83")) +
facet_grid(~Interface) +
scale_y_continuous(limits= c(2,22), breaks = c(2,4,6,8,10,12,14,16, 18, 20, 22)) +
scale_shape_manual(values=c(19,17))
```
<br>
# Determining median number of plasmodesmata per cluster
```{r, message = FALSE, warning= FALSE}
#library(ggbeeswarm) called in the function so no need to load it
#library(data.table) called in the function so no need to load it
# we count how many PDs are present in each cluster separately for the methods
silh_count <- clusters %>%
count(Genotype, Interface, DatasetFilename, Cell, .cluster) %>%
mutate(Method = "Silhouette")
mclust_count <- clusters %>%
count(Genotype, Interface, DatasetFilename, Cell, .class) %>%
mutate(Method = "Mclust")
# we then merge the counts
combined_count <- rbind(silh_count[,-5], mclust_count[,-5])
combined_count %>%
ggplot(aes(x= Method, y=n, colour= Genotype, fill= Genotype)) +
geom_violin(alpha=0.5) +
# we use this geometry from the ggbeeswarm package
ggbeeswarm::geom_quasirandom(data= combined_count, aes(group=Genotype), colour="black", fill="black", size= 2, alpha=0.5, width=0.1, show.legend = FALSE, dodge.width = 0.9) +
stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median,
geom = "crossbar", size = 0.5, width = 0.3, alpha=1) +
labs(y = "n of PDs per cluster") +
scale_color_manual(values=c("#8B8B83")) +
scale_fill_manual(values=c("#8B8B83")) +
facet_grid(~Interface) +
# we use a log scale to better visualise the range of data
scale_y_log10()
# for visualisations purposes (in Imaris/Amira) it can be convenient to have the cluster assignment results generated in R as a file output
#set directory
setwd('./Data_individual_cells')
data.table::fwrite(clusters, "clusters.csv")
```
<br>
Now that we established which clusters exist on the interfaces of interest we can move on to the [next section](surfaces.html)