-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathripley.html
662 lines (551 loc) · 22.2 KB
/
ripley.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Alternative approaches</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/default.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Data analysis</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Welcome</a>
</li>
<li>
<a href="preliminary.html">Preliminary steps</a>
</li>
<li>
<a href="distributions.html">Distributions</a>
</li>
<li>
<a href="clusters.html">Clusters</a>
</li>
<li>
<a href="surfaces.html">Surfaces</a>
</li>
<li>
<a href="wall.html">Cell wall</a>
</li>
<li>
<a href="ripley.html">Alternatives</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Alternative approaches</h1>
</div>
<!-- Load Zooming library that will enable to click on images and zoom them -->
<script src="https://unpkg.com/zooming/build/zooming.min.js"></script>
<script>
// Listen to images after DOM content is fully loaded
document.addEventListener('DOMContentLoaded', function () {
new Zooming({
// options...
}).listen('.img-zoomable')
})
</script>
<p><br></p>
<p>In the paper we provided <em>one</em> pipeline for the analysis of the data generated by the plugins. Many other approaches are in principle possible and are actually warmly invited. In response to a reviewer’s suggestion, here we show an alternative strategy for the analysis of PD distributions. This approach employs Ripley’s K function implemented in the <a href="https://cran.r-project.org/web/packages/spatstat/index.html">spatstat package</a>. We highlight advantages and pitfalls. Overall, if this approach was to be implemented in the future, it will require, for precision, the spatial edges of the segmented wall and, for robustness, effect size assessments.</p>
<p><br></p>
<div id="exploring-an-example-of-real-data-at-ppp-en" class="section level1">
<h1>Exploring an example of real data at PPP-EN</h1>
<p><br></p>
<p>At this interface in the paper, using Euclidean distances and KS tests, we had detected clustering of PDs. Ripley’s K test, as shown below, seems to agree with this result. Please note that it was run on a single cell and not on the entire dataset.</p>
<p><br></p>
<pre class="r"><code>library(tidyverse)
library(broom)
setwd('./Data_individual_cells')
PPP_example_real <- read_csv("170314_Col_HD_R20_339-381um_DNN_PPP1-EN_Ann.csv") %>%
as.data.frame %>%
select(c(LabelPositionXunits, LabelPositionYunits, LabelPositionZunits)) %>%
rename("X_units"="LabelPositionXunits") %>%
rename("Y_units"="LabelPositionYunits") %>%
rename("Z_units"="LabelPositionZunits") %>%
mutate(Genotype = "Col-0") %>%
mutate(DatasetFilename = "170314_Col_HD_R20_339-381um_DNN_PPP1-EN") %>%
mutate(Interface = "PPP-EN") %>%
mutate(IterationNumber = "real")
# we first perform a pca, reducing our data to a 2D situation
# we scale the data
PPP_example_real_pca <- PPP_example_real %>% select(X_units, Y_units, Z_units) %>% prcomp(scale. = TRUE)
# we can check that the PCA is not causing a signicant loss of information
tidy(PPP_example_real_pca, matrix = "pcs") %>% print() </code></pre>
<pre><code>## # A tibble: 3 x 4
## PC std.dev percent cumulative
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1.54 0.785 0.785
## 2 2 0.784 0.205 0.990
## 3 3 0.172 0.00983 1</code></pre>
<pre class="r"><code># more than 90% retained in all cases in the first two dimentions
# we attach the pca columns contained in pca object to the original data
# 1 and 2 only take the first two PCAs, we are not attaching third PCA
PPP_example_real <- cbind(PPP_example_real, PPP_example_real_pca$x[, 1:2])
# to use Ripley's K test we need to load the spatstat package
#install.packages("spatstat")
library(spatstat)
# we then need to create a spatial object with the ppp function that includes the x and y coordinates of the points (here PC1 and PC2) and also the overall space the points sit in. Because the the segmented wall cannot be easily imported in R here we need to use an approximation of the space obtained with max() and min() functions on PC1 and PC2
# THIS IS NOT STRICTLY SPEAKING PRECISE and it is why we favoured the Euclidean distances approach in the paper, as that approach does not require any surface information.
# Please remember this limitation is using this
PPP_example_real_pattern <- ppp(PPP_example_real$PC1, PPP_example_real$PC2, c(min(PPP_example_real$PC1),max(PPP_example_real$PC1)), c(min(PPP_example_real$PC2),max(PPP_example_real$PC2)))
# we can summarise the obtained spatial area
summary(PPP_example_real_pattern)</code></pre>
<pre><code>## Planar point pattern: 129 points
## Average intensity 7.27042 points per square unit
##
## Coordinates are given to 8 decimal places
##
## Window: rectangle = [-2.5556158, 2.6436893] x [-1.9129159, 1.4996804] units
## (5.199 x 3.413 units)
## Window area = 17.7431 square units</code></pre>
<pre class="r"><code># we now run the Ripley's test
# we use envelope function rather than the Kest one alone to additionally determine the significance of the patterns. The function simulates some number of datasets (nsim = ...) by permuting the locations of input data and then obtaining the range of K values across a range of distances for each permuted dataset. The gray area obtained will represent the 95% confidence intervals for complete spatial randomness based on these simulations of data. The correction argument incorporates an edge correction with different potential models
plot(envelope(PPP_example_real_pattern, Kest), main="Example real data at PPP-EN interface")</code></pre>
<pre><code>## Generating 99 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.
##
## Done.</code></pre>
<p><img src="ripley_files/figure-html/unnamed-chunk-1-1.png" width="672" /></p>
<pre class="r"><code># the black line represents our data
# the red line the theoretical spatial randomness
# the grey area the confidence intervals as mentioned</code></pre>
<p><br></p>
</div>
<div id="exploring-simulated-data-at-the-ppp-en-interface" class="section level1">
<h1>Exploring simulated data at the PPP-EN interface</h1>
<p><br></p>
<p>Ripley’s K test does not require our simulated data. This would be a computational advantage. Nonetheless, we run the test on some simulations. We expected them to act as negative controls (as <em>we know</em> these distributions have been sampled from uniform distibutions). Here we encountered some concerns: while in some simulations (#45) the test did not detect clustering (as expected) in others (#1) weak signatures of clustering were detected.</p>
<p>This is not fully surprising as even “random” data can experience phenomena like Poisson clumping. In addition, the boundary space between the real and simulated data (and also between different simulated data for the same cell) can be slightly different due to the min() and max() functions being used. This could cause effects we don’t fully control or forecast. That is a limitation of being unable to import the segmented wall as a spatial object.</p>
<p>However, these results makes us question the direct use of Ripley’s K on real data alone. They rather suggest that employing Ripley’s K might require more quantitative assessments. For instance, one could try to calculate the K curve for each simulation and see if the curve for the real data is always above the simulated ones (arching more). We invite people interested in using this function to consider this.</p>
<p><br></p>
<pre class="r"><code>setwd('./Data_individual_cells')
PPP_example_simulated <- read_csv("170314_Col_HD_R20_339-381um_DNN_PPP1-EN_random_points.csv") %>%
as.data.frame %>%
mutate(Genotype = "Col-0") %>%
mutate(DatasetFilename = "170314_Col_HD_R20_339-381um_DNN_PPP1-EN") %>%
mutate(Interface = "PPP-EN")
# we now select two different simulation
PPP_example_simulated_45 <- filter(PPP_example_simulated, IterationNumber=="45")
PPP_example_simulated_1 <- filter(PPP_example_simulated, IterationNumber=="1")
PPP_example_simulated_45_pca <- PPP_example_simulated_45 %>% select(X_units, Y_units, Z_units) %>% prcomp(scale. = TRUE)
PPP_example_simulated_1_pca <- PPP_example_simulated_1 %>% select(X_units, Y_units, Z_units) %>% prcomp(scale. = TRUE)
tidy(PPP_example_simulated_45_pca, matrix = "pcs") %>% print() </code></pre>
<pre><code>## # A tibble: 3 x 4
## PC std.dev percent cumulative
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1.44 0.690 0.690
## 2 2 0.943 0.296 0.986
## 3 3 0.207 0.0143 1</code></pre>
<pre class="r"><code>tidy(PPP_example_simulated_1_pca, matrix = "pcs") %>% print()</code></pre>
<pre><code>## # A tibble: 3 x 4
## PC std.dev percent cumulative
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1.46 0.714 0.714
## 2 2 0.904 0.272 0.986
## 3 3 0.207 0.0143 1</code></pre>
<pre class="r"><code>PPP_example_simulated_45 <- cbind(PPP_example_simulated_45, PPP_example_simulated_45_pca$x[, 1:2])
PPP_example_simulated_1 <- cbind(PPP_example_simulated_1, PPP_example_simulated_1_pca$x[, 1:2])
PPP_example_simulated_45_pattern <- ppp(PPP_example_simulated_45$PC1, PPP_example_simulated_45$PC2, c(min(PPP_example_simulated_45$PC1),max(PPP_example_simulated_45$PC1)), c(min(PPP_example_simulated_45$PC2),max(PPP_example_simulated_45$PC2)))
PPP_example_simulated_1_pattern <- ppp(PPP_example_simulated_1$PC1, PPP_example_simulated_1$PC2, c(min(PPP_example_simulated_1$PC1),max(PPP_example_simulated_1$PC1)), c(min(PPP_example_simulated_1$PC2),max(PPP_example_simulated_1$PC2)))
summary(PPP_example_simulated_45_pattern)</code></pre>
<pre><code>## Planar point pattern: 129 points
## Average intensity 6.909588 points per square unit
##
## Coordinates are given to 8 decimal places
##
## Window: rectangle = [-2.5423422, 2.5808921] x [-2.088468, 1.5556574] units
## (5.123 x 3.644 units)
## Window area = 18.6697 square units</code></pre>
<pre class="r"><code>summary(PPP_example_simulated_1_pattern)</code></pre>
<pre><code>## Planar point pattern: 129 points
## Average intensity 7.287919 points per square unit
##
## Coordinates are given to 8 decimal places
##
## Window: rectangle = [-2.30716, 3.358493] x [-1.6954055, 1.4287757] units
## (5.666 x 3.124 units)
## Window area = 17.7005 square units</code></pre>
<pre class="r"><code>plot(envelope(PPP_example_simulated_45_pattern, Kest, correction="best", nsim = 1000), main="Example simulated data #45 at PPP-EN interface")</code></pre>
<pre><code>## Generating 1000 simulations of CSR ...
## 1, 2, 3, ......10.........20.........30.........40.........50.........60........
## .70.........80.........90.........100.........110.........120.........130......
## ...140.........150.........160.........170.........180.........190.........200....
## .....210.........220.........230.........240.........250.........260.........270..
## .......280.........290.........300.........310.........320.........330.........340
## .........350.........360.........370.........380.........390.........400........
## .410.........420.........430.........440.........450.........460.........470......
## ...480.........490.........500.........510.........520.........530.........540....
## .....550.........560.........570.........580.........590.........600.........610..
## .......620.........630.........640.........650.........660.........670.........680
## .........690.........700.........710.........720.........730.........740........
## .750.........760.........770.........780.........790.........800.........810......
## ...820.........830.........840.........850.........860.........870.........880....
## .....890.........900.........910.........920.........930.........940.........950..
## .......960.........970.........980.........990......... 1000.
##
## Done.</code></pre>
<p><img src="ripley_files/figure-html/unnamed-chunk-2-1.png" width="672" /></p>
<pre class="r"><code>plot(envelope(PPP_example_simulated_1_pattern, Kest, correction="best", nsim = 1000), main="Example simulated data #1 at PPP-EN interface")</code></pre>
<pre><code>## Generating 1000 simulations of CSR ...
## 1, 2, 3, ......10.........20.........30.........40.........50.........60........
## .70.........80.........90.........100.........110.........120.........130......
## ...140.........150.........160.........170.........180.........190.........200....
## .....210.........220.........230.........240.........250.........260.........270..
## .......280.........290.........300.........310.........320.........330.........340
## .........350.........360.........370.........380.........390.........400........
## .410.........420.........430.........440.........450.........460.........470......
## ...480.........490.........500.........510.........520.........530.........540....
## .....550.........560.........570.........580.........590.........600.........610..
## .......620.........630.........640.........650.........660.........670.........680
## .........690.........700.........710.........720.........730.........740........
## .750.........760.........770.........780.........790.........800.........810......
## ...820.........830.........840.........850.........860.........870.........880....
## .....890.........900.........910.........920.........930.........940.........950..
## .......960.........970.........980.........990......... 1000.
##
## Done.</code></pre>
<p><img src="ripley_files/figure-html/unnamed-chunk-2-2.png" width="672" /></p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>