-
Notifications
You must be signed in to change notification settings - Fork 0
/
surfaces.html
799 lines (659 loc) · 27.5 KB
/
surfaces.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Surface areas</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/default.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Data analysis</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Welcome</a>
</li>
<li>
<a href="preliminary.html">Preliminary steps</a>
</li>
<li>
<a href="distributions.html">Distributions</a>
</li>
<li>
<a href="clusters.html">Clusters</a>
</li>
<li>
<a href="surfaces.html">Surfaces</a>
</li>
<li>
<a href="wall.html">Cell wall</a>
</li>
<li>
<a href="ripley.html">Alternatives</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Surface areas</h1>
</div>
<!-- Load Zooming library that will enable to click on images and zoom them -->
<script src="https://unpkg.com/zooming/build/zooming.min.js"></script>
<script>
// Listen to images after DOM content is fully loaded
document.addEventListener('DOMContentLoaded', function () {
new Zooming({
// options...
}).listen('.img-zoomable')
})
</script>
<p><br></p>
<p>In this section we continue to ask questions about the distribution of Plasmodesmata (or similar types of annotations along a given model). We continue to use the output of the Spatial control plugin shown in the <a href="#distributions.html">Distributions section</a>. Since we previously detected a bias in the distribution of Plasmodesmata, strongly hinting at the presence of spatial clustering, and we then quantified the number of these clusters of plasmodesmata we now ask: <strong>What proportions of the cellular surface do these clusters occupy?</strong></p>
<p><br></p>
<div id="exploring-the-data" class="section level1">
<h1>Exploring the data</h1>
<p><br></p>
<pre class="r"><code>library(tidyverse)
library(broom)
#library(splancs) called in the function so no need to load it
#library(ggbeeswarm) called in the function so no need to load it
# we loook at one one cell as an example
# please note that the clusters object is being carried over from the analysis that was performed in previous sections
cluster_example <- clusters %>% filter(DatasetFilename == "170314_Col_HD_R20_339-381um_DNN" & Cell == "PPP1-EN")
# we are going to largely replicate the workings of the fviz_clust function used in clusters section. There these steps were done implicitly by the functions but here we make the steps apparent and we extract data
# we first perform a pca, reducing our data to a 2D situation
# we scale the data to match what was done by the fviz_clust function. Note that this is not strictly necessary but more for graphical matching purposes. Clusters can be recognised in both cases. The scaling can also be turned off in the fviz_clust command. Either way the scaling effect seems negligible
cluster_pca <- cluster_example %>% select(X_units, Y_units, Z_units) %>% prcomp(scale. = TRUE)
# we can check that the PCA is not causing a signicant loss of information
tidy(cluster_pca, matrix = "pcs") %>% print() </code></pre>
<pre><code>## # A tibble: 3 x 4
## PC std.dev percent cumulative
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1.54 0.785 0.785
## 2 2 0.784 0.205 0.990
## 3 3 0.172 0.00983 1</code></pre>
<pre class="r"><code># more than 90% retained in all cases in the first two dimentions
# we attach the pca columns contained in pca object to the original data
# 1 and 2 only take the first two PCAs, we are not attaching third PCA
cluster_example <- cbind(cluster_example, cluster_pca$x[, 1:2]) %>%
# we also order the numbers of clusters for that well so that they will appear in a logical order in the legend
mutate(.cluster = factor(.cluster, levels = c("1", "2", "3", "4", "5", "6","7","8", "9", "10", "11"))) %>%
mutate(.class = factor(.class, levels = c("1", "2", "3", "4", "5", "6","7","8", "9", "10", "11", "12", "13", "14")))
# we use now use the chull function
# it finds the rows that contain the points (and the coordinates) that describe the edges of the poligon that could be drawn around each cluster
# to isolate those rows we use the function slice
# we group by cluster to obtain the single areas or we don't to obtain the full surface of the cell
cluster_chull_sil <- cluster_example %>%
group_by(.cluster) %>%
slice(chull(PC1, PC2))
cluster_chull_class <- cluster_example %>%
group_by(.class) %>%
slice(chull(PC1, PC2))
total_chull <- cluster_example %>%
slice(chull(PC1, PC2))
# we visualise the results, in this case for the silhouette method
ggplot(cluster_example, aes(PC1, PC2)) +
geom_point(data = cluster_example, aes(colour=.cluster, fill=.cluster)) +
geom_polygon(data = total_chull, alpha = 0.09) +
geom_polygon(data = cluster_chull_sil, aes(colour=.cluster, fill = .cluster), alpha = 0.3) +
xlab("PC1 (78.5%)") + ylab("PC2 (20.5%)") +
labs(fill = "Silhouette \n clusters", colour = "Silhouette \n clusters")</code></pre>
<p><img src="surfaces_files/figure-html/unnamed-chunk-2-1.png" width="672" /></p>
<pre class="r"><code># you will notice that this is nearly identical to the fviz function results
# by using .class instead you would get the results according to the McLust function
# now we want to calculate areas
# we created a small function that uses the areapl from the splancs library
cha <- function(x,y){
i <- chull(x,y)
return(splancs::areapl(cbind(x[i],y[i])))
}
cluster_example %>%
mutate(total_area = cha(PC1, PC2)) %>%
group_by(.cluster) %>%
summarise(area = cha(PC1, PC2), total_area = unique(total_area)) %>%
head()</code></pre>
<pre><code>## # A tibble: 6 x 3
## .cluster area total_area
## <fct> <dbl> <dbl>
## 1 1 0.365 12.6
## 2 2 0.359 12.6
## 3 3 0.317 12.6
## 4 4 0.167 12.6
## 5 5 0.204 12.6
## 6 6 0.0827 12.6</code></pre>
<pre class="r"><code># do note that the units of these values are not strictyly speaking conventional surface units as the coordinates underwent a pca. We address this aspect in following steps</code></pre>
<p><br></p>
</div>
<div id="compiling-the-data" class="section level1">
<h1>Compiling the data</h1>
<p><br></p>
<pre class="r"><code># to process multiple cells in one go we write a larger function encompassing the steps described above
calculate_areas_sil <- function(x){
# Run PCA
x_pca <- x %>%
select(X_units, Y_units, Z_units) %>%
prcomp(scale. = TRUE)
# bind first two PCs
x <- cbind(x, x_pca$x[, 1:2])
# calculate area of each cluster (here we do it for the silhouette method)
area_of_clusters <- x %>%
group_by(.cluster) %>%
summarise(area = cha(PC1, PC2))
# add total area
area_of_clusters$total_area <- cha(x$PC1, x$PC2)
#add sum of the areas of clusters
area_of_clusters$sum_area <- sum(area_of_clusters$area)
#percentage conductive surface (of the total)
area_of_clusters$perc_tot <- area_of_clusters$sum_area/area_of_clusters$total_area*100
#percentage of surface of each cluster
area_of_clusters$perc <- area_of_clusters$area/area_of_clusters$total_area*100
return(area_of_clusters)
}
# a nearly identical second function is created for the Mclust method
calculate_areas_class <- function(x){
x_pca <- x %>%
select(X_units, Y_units, Z_units) %>%
prcomp(scale. = TRUE)
x <- cbind(x, x_pca$x[, 1:2])
# we use .class instead
area_of_clusters <- x %>%
group_by(.class) %>%
summarise(area = cha(PC1, PC2))
area_of_clusters$total_area <- cha(x$PC1, x$PC2)
area_of_clusters$sum_area <- sum(area_of_clusters$area)
area_of_clusters$perc_tot <- area_of_clusters$sum_area/area_of_clusters$total_area*100
area_of_clusters$perc <- area_of_clusters$area/area_of_clusters$total_area*100
return(area_of_clusters)
}
# we apply it and we nest the results
clusters_processed <- clusters %>%
group_by(DatasetFilename, Genotype, Interface, Cell) %>%
nest() %>%
mutate(cluster_sil_areas = lapply(data, calculate_areas_sil)) %>%
mutate(cluster_class_areas = lapply(data, calculate_areas_class))
# we then unnest separately the results for either method
area_for_method_sil <- clusters_processed %>%
unnest(cluster_sil_areas) %>%
mutate(Method = "Silhouette")
area_for_method_class <- clusters_processed %>%
unnest(cluster_class_areas) %>%
mutate(Method = "Mclust")
# we then merge them
clusters_unnested <- bind_rows(area_for_method_class, area_for_method_sil)</code></pre>
<p><br></p>
</div>
<div id="calculating-the-median-total-conductive-surface-of-an-interface-as" class="section level1">
<h1>Calculating the median total conductive surface of an interface (as %)</h1>
<p><br></p>
<pre class="r"><code># we now ask how much of the total surface (the gray shaded area we calculated in previous steps) is occupied by PD clusters
# for plotting you need to isolate the unique value for each cell (otherwise each cluster will be counted as a point altering the shape of distribution).
#the easiest way is to subset the dataset only for relevant columns and then use unique
ggplot(data=unique(clusters_unnested[, c("Genotype", "Interface", "DatasetFilename", "Cell", "perc_tot", "Method")]), aes(x= Method, y=perc_tot, colour= Genotype, fill= Genotype)) +
# we use shape = to characterise the points according to which root (datset they belong to)
ggbeeswarm::geom_quasirandom(aes(shape=DatasetFilename,group=Genotype), size= 4, alpha=0.5, width=0.1, show.legend = FALSE, dodge.width = 0.9) +
stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median,
geom = "crossbar", size = 0.5, width = 0.3, alpha=1) +
labs(y = "% of interface surface overall occupied by PD clusters") +
scale_color_manual(values=c("#8B8B83")) +
scale_fill_manual(values=c("#8B8B83")) +
facet_grid(~Interface) +
scale_y_continuous(limits= c(5,40), breaks = c(5,10,15,20,25,30,35,40)) +
scale_shape_manual(values=c(19,17))</code></pre>
<p><img src="surfaces_files/figure-html/unnamed-chunk-4-1.png" width="672" /></p>
<p><br></p>
</div>
<div id="calculating-the-median-surface-of-individual-clusters-as" class="section level1">
<h1>Calculating the median surface of individual clusters (as %)</h1>
<p><br></p>
<pre class="r"><code># to calculate the surface of individual clusters independently we don't need to subset the data
ggplot(clusters_unnested, aes(x= Method, y=perc, colour= Genotype, fill= Genotype)) +
geom_violin(alpha=0.5)+
ggbeeswarm::geom_quasirandom(aes(group=Genotype), colour="black", fill="black", size= 2, alpha=0.5, width=0.1, show.legend = FALSE, dodge.width = 0.9) +
stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median,
geom = "crossbar", size = 0.5, width = 0.3, alpha=1) +
labs(y = "% of interface surface occupied by individual PD clusters") +
scale_color_manual(values=c("#8B8B83")) +
scale_fill_manual(values=c("#8B8B83")) +
facet_grid(~Interface) +
scale_y_log10()</code></pre>
<p><img src="surfaces_files/figure-html/unnamed-chunk-5-1.png" width="672" /></p>
<p><br></p>
</div>
<div id="calculating-the-actual-surface-of-the-interface" class="section level1">
<h1>Calculating the actual surface of the interface</h1>
<p><br></p>
<p>In this part we try to relate the percentages we calculated in the <a href="#surf1">sections above</a> to the real surface areas (in um^2) of our cells. To do this we employ the second plugin developed for the Paterlini, Belevich et al. paper: the <em>SurfaceArea3D</em> plugin. The plugin finds the midline of a supplied segmented wall on each slice of the model and then it connects such midlines across the slices, generating a surface. See the methods section of the paper for more details. An earlier version of the plugin has actually been used in an earlier paper we published <a href="https://www.nature.com/articles/s41477-019-0429-5">Yan et al.(2019)</a></p>
<p><br></p>
</div>
<div id="run2" class="section level1">
<h1>Run the <em>SurfaceArea3D</em> plugin</h1>
<p><br> Make sure you have loaded your datasets and models as described in the <a href="preliminary.html">Preliminary Steps section</a>. In this case annotations are not required.</p>
<p>From the MIB interface go to the Plugins tab -> Organelle Analysis -> SurfaceArea3D. A user interface will appear with multiple fields to be filled in:</p>
<ul>
<li><p>For “Material with surface” select the appropriate segmented object you want to calculate the area of.</p></li>
<li><p>For “XY smoothing”, “XY sampling” and “Z sampling” input values of <em>5, 5 and 1</em>. This creates an appropriate level of surface smoothing for the surface we are trying to generate and ensures a good yet computationally feasible sampling of our models to generate the surface itself. This parameter might depend on your object of interest.</p></li>
<li><p>Clicking “Export results to Matlab” displays the resulting surface values in Matlab. Clicking “Save results in Matlab, Excel or CSV format” conversely allows you to store these values in a file. By pressing “Filename for export” ensure that the format is <em>.csv</em> (this is the format we recommend and used in this analysis)</p></li>
<li><p>Clicking “Generate a model for each contact” enables you to store the surface object(s) being generated</p></li>
<li><p>“Export contact To Imaris” sends the generated surface(s) to Imaris for 3D rendering.</p></li>
</ul>
<p>After pressing “Continue”, when the process has finished a new window will appear with the largest of surfaces calculated appearing in it.</p>
<!-- all figures need to be placed in this syntax to be zoomable -->
<figure>
<img src='img/area.png' class='img-zoomable' />
</figure>
<p><br></p>
</div>
<div id="check-outputs" class="section level1">
<h1>Check outputs</h1>
<p><br></p>
<p>If the plugin has worked correctly and you followed the instructions to calculate the surfaces of the models your <em>Data_individual_cells</em> folder should now contain one additional files.</p>
<p>This is the output of the <em>SurfaceArea3D</em> plugin: a <i>*_SurfaceArea3D_wall.csv</i> file.</p>
<p>In the files one object with a certain surface shoud be listed in most cases. However, please note that in certain cases (such as cases where shifts in the images are present) multiple objects might be detected. This is just because the software can’t generate a single objects but rather produces two objects separated by the section where the image shift occurred. Small wall sections can also generate additional smaller objects</p>
<p><br> <!-- all figures need to be placed in this syntax to be zoomable --></p>
<figure>
<img src='img/area_output.png' class='img-zoomable' />
</figure>
<p><br></p>
<p>If you want to analyse multiple datasets at the same, as we will do here, the processes described above need to be repeated for each <em>.am</em> file.</p>
<p><br></p>
</div>
<div id="processing-the-surfaces-in-r" class="section level1">
<h1>Processing the surfaces in R</h1>
<p><br></p>
<pre class="r"><code># THIS SECTION IS HIDDEN AND ONLY REQUIRED FOR KNITTING PURPOSES
# BECAUSE WE DON'T WANT TO SHOW SETWD FUNCTION (as the path would likely be different on the computer of a user, we mirror the first part of the script and run it in a hidden chunk. The chunk diplayed will actally be idle, showing the code but not run
setwd('./Data_individual_cells')
#first we read the files
Col_area <- list.files(path = ".", pattern = "SurfaceArea3D_wall.csv") %>% map_df(function(f){
#this will print the dataset
print(f)
x <- read_csv(f) %>%
as.data.frame %>%
mutate(DatasetFilename = f) %>%
mutate(Genotype = "Col-0") %>%
mutate(Interface = "PPP-EN")
})
#we edit the text of the DatasetFilename column to clean it
Col_area$DatasetFilename <- gsub("_SurfaceArea3D_wall.csv", "", Col_area$DatasetFilename)</code></pre>
<pre class="r"><code># IMPORTANT:
# the working directory is assumed to be the downloaded folder "Data_individual_cells" so paths are given relative to that. Make sure this is also the case in your R environment using the getwd and setwd
#first we read the files
Col_area <- list.files(path = ".", pattern = "SurfaceArea3D_wall.csv") %>%
map_df(function(f){
#this will print the dataset
print(f)
x <- read_csv(f) %>%
as.data.frame %>%
mutate(DatasetFilename = f) %>%
mutate(Genotype = "Col-0") %>%
mutate(Interface = "PPP-EN")
})
#we edit the text of the DatasetFilename column to clean it
Col_area$DatasetFilename <- gsub("_SurfaceArea3D_wall.csv", "", Col_area$DatasetFilename)</code></pre>
<pre class="r"><code># because in some cases multiple objects were generated (despite having a single cellular interface) we merge those multiple objects into a single one
Col_area_corrected <- Col_area %>% group_by(Genotype, Interface, DatasetFilename) %>% dplyr::summarise(total_surface = sum(SurfaceArea, na.rm = TRUE))
# we are going to clean the DatasetFilename column as we did elsewhere in this pipeline
# we are going to duplicate the dataset column first
Col_area_corrected$Cell = Col_area_corrected$DatasetFilename
#in the dataset filename column we remove anything after _DNN
Col_area_corrected$DatasetFilename <- gsub("_PPP.*","", Col_area_corrected$DatasetFilename)
# in the column cell we remove anything before the name of the cell
Col_area_corrected$Cell <- gsub(".*PPP", "PPP", Col_area_corrected$Cell)
# we plot it
Col_area_corrected %>%
ggplot(aes(x= Genotype, y=total_surface, colour= Genotype, fill= Genotype)) +
stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median,
geom = "crossbar", size = 0.5, width = 0.3, alpha=1) +
ggbeeswarm::geom_quasirandom(aes(shape=DatasetFilename), size= 4, alpha=0.5, width=0.1, show.legend = FALSE, dodge.width = 0.3) +
labs(y = "Surface area of the cell (um^2)") +
theme(legend.position = "none") +
scale_color_manual(values=c("#8B8B83")) +
scale_fill_manual(values=c("#8B8B83")) +
facet_grid(~Interface) +
scale_y_continuous(limits= c(60,130), breaks = c(60,70,80,90,100,110,120,130,140)) +
scale_shape_manual(values=c(19,17))</code></pre>
<p><img src="surfaces_files/figure-html/unnamed-chunk-8-1.png" width="672" /></p>
<p><br></p>
<p>Using the median value of the surface and the median values of the percentages that we obtained <a href="#surf1">above</a> we can manually get estimates in um^2 of the conductive surface in cells and of the surface of the single clusters.</p>
<p><br></p>
<p>You have now completed this section: we have calculated the surfaces occupied by the clusters on our interfaces of interest. In the <a href="wall.html">next section</a> we will ask questions about the wall environment plasmodesmata lie within.</p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>