-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcrit_bench_template.R
64 lines (53 loc) · 1.93 KB
/
crit_bench_template.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Process nofib data
#library(dplyr)
#library(rlang)
gm_mean = function(x, na.rm=TRUE){
exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
}
c_allCalls.all.set-operations-set.csv
resultPath <- "remoteResults/benchResultsXeon1/"
compiler <- "c_allCalls"
benchmarks = c("set-operations-set")
variants <- c("all", "vanilla", "some", "none")
csvresults <- list()
for(variant in variants) {
#for(variant in c("aeson_adjusted", "aeson_allCalls", "aeson_head", "aeson_noCalls", "aeson_someCalls", "aeson_vanilla")) {
speedups <- list()
benchmark <- "aeson-benchmark-typed"
for (benchmark in benchmarks) {
print(variant)
print(benchmark)
csv <- read.csv(paste(resultPath, compiler, ".", variant, ".", benchmark, ".csv", sep=""), header = TRUE)
n <- row.names(csv)
n <- paste(n, csv[n,1], sep="")
csv <- csv[,-1]
rownames(csv) <- n
csvresults[[benchmark]][[variant]] <- csv[,1]
names(csvresults[[benchmark]][[variant]]) <- rownames(csv)
}
}
csvresults
speedups <- list()
for(variant in variants) {
speedups[[variant]] <- list()
for(benchmark in benchmarks) {
speedup <- csvresults[[benchmark]][["vanilla"]]/csvresults[[benchmark]][[variant]]
print(speedup)
speedups[[variant]][[benchmark]] <- speedup
}
}
meanSpeedups <- matrix(nrow = length(benchmarks), ncol = length(variants), dimnames = list(bench = benchmarks, algo=variants))
for(vi in 1:length(variants)) {
variant <- variants[vi]
for(bi in 1:length(benchmarks)) {
benchmark <- benchmarks[bi]
speedup <- csvresults[[benchmark]][["vanilla"]]/csvresults[[benchmark]][[variant]]
x <- gm_mean(speedup)
meanSpeedups[bi, vi] <- x
}
}
geoMean_overall <- apply(FUN = gm_mean, X = meanSpeedups, MARGIN = c(2))
meanSpeedups <- rbind(meanSpeedups, geoMean_overall)
meanSpeedups
heatmap(meanSpeedups)
sort(apply(FUN = gm_mean, X = meanSpeedups, MARGIN = c(2))) * 100