-
Notifications
You must be signed in to change notification settings - Fork 1
/
functions.py
642 lines (471 loc) · 25.6 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
"""
Functions for training the cosmoGAN algorithm and to analyze the results.
"""
###################################
## Importing the packages: ##
###################################
import os
import tensorflow as tf
import sys
import time
import numpy as np
import pprint
import matplotlib.pyplot as plt
###################################
## Defining the functions: ##
###################################
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, transpose_b=False):
shape = input_.get_shape().as_list()
if not transpose_b:
w_shape = [shape[1], output_size]
else:
w_shape = [output_size, shape[1]]
with tf.variable_scope(scope or "linear"):
matrix = tf.get_variable('w', w_shape, tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable('b', [output_size],
initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix, transpose_b=transpose_b) + bias
def conv2d(input_, out_channels, data_format, kernel=5, stride=2, stddev=0.02, name="conv2d"):
if data_format == "NHWC":
in_channels = input_.get_shape()[-1]
strides = [1, stride, stride, 1]
else: # NCHW
in_channels = input_.get_shape()[1]
strides = [1, 1, stride, stride]
with tf.variable_scope(name):
w = tf.get_variable('w', [kernel, kernel, in_channels, out_channels],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=strides, padding='SAME', data_format=data_format)
biases = tf.get_variable('biases', [out_channels], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases, data_format=data_format), conv.get_shape())
return conv
def conv2d_transpose(input_, output_shape, data_format, kernel=5, stride=2, stddev=0.02,
name="conv2d_transpose"):
if data_format == "NHWC":
in_channels = input_.get_shape()[-1]
out_channels = output_shape[-1]
strides = [1, stride, stride, 1]
else:
in_channels = input_.get_shape()[1]
out_channels = output_shape[1]
strides = [1, 1, stride, stride]
with tf.variable_scope(name):
w = tf.get_variable('w', [kernel, kernel, out_channels, in_channels],
initializer=tf.random_normal_initializer(stddev=stddev))
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape, strides=strides, data_format=data_format)
biases = tf.get_variable('biases', [out_channels], initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases, data_format=data_format), deconv.get_shape())
return deconv
def lrelu(x, alpha=0.2, name="lrelu"):
with tf.name_scope(name):
return tf.maximum(x, alpha*x)
class dcgan(object):
def __init__(self, output_size=64, batch_size=64,
nd_layers=4, ng_layers=4, df_dim=128, gf_dim=128,
c_dim=1, z_dim=100, flip_labels=0.01, data_format="NHWC",
gen_prior=tf.random_normal, transpose_b=False):
self.output_size = output_size
self.batch_size = batch_size
self.nd_layers = nd_layers
self.ng_layers = ng_layers
self.df_dim = df_dim
self.gf_dim = gf_dim
self.c_dim = c_dim
self.z_dim = z_dim
self.flip_labels = flip_labels
self.data_format = data_format
self.gen_prior = gen_prior
self.transpose_b = transpose_b # transpose weight matrix in linear layers for (possible) better performance when running on HSW/KNL
self.stride = 2 # this is fixed for this architecture
self._check_architecture_consistency()
self.batchnorm_kwargs = {'epsilon' : 1e-5, 'decay': 0.9,
'updates_collections': None, 'scale': True,
'fused': True, 'data_format': self.data_format}
def training_graph(self):
if self.data_format == "NHWC":
self.images = tf.placeholder(tf.float32, [self.batch_size, self.output_size, self.output_size, self.c_dim], name='real_images')
else:
self.images = tf.placeholder(tf.float32, [self.batch_size, self.c_dim, self.output_size, self.output_size], name='real_images')
self.z = self.gen_prior(shape=[self.batch_size, self.z_dim])
with tf.variable_scope("discriminator") as d_scope:
d_prob_real, d_logits_real = self.discriminator(self.images, is_training=True)
with tf.variable_scope("generator") as g_scope:
g_images = self.generator(self.z, is_training=True)
with tf.variable_scope("discriminator") as d_scope:
d_scope.reuse_variables()
d_prob_fake, d_logits_fake = self.discriminator(g_images, is_training=True)
with tf.name_scope("losses"):
with tf.name_scope("d"):
d_label_real, d_label_fake = self._labels()
self.d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=d_label_real, name="real"))
self.d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=d_label_fake, name="fake"))
self.d_loss = self.d_loss_real + self.d_loss_fake
with tf.name_scope("g"):
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake)))
self.d_summary = tf.summary.merge([tf.summary.histogram("prob/real", d_prob_real),
tf.summary.histogram("prob/fake", d_prob_fake),
tf.summary.scalar("loss/real", self.d_loss_real),
tf.summary.scalar("loss/fake", self.d_loss_fake),
tf.summary.scalar("loss/d", self.d_loss)])
g_sum = [tf.summary.scalar("loss/g", self.g_loss)]
if self.data_format == "NHWC": # tf.summary.image is not implemented for NCHW
g_sum.append(tf.summary.image("G", g_images, max_outputs=4))
self.g_summary = tf.summary.merge(g_sum)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'discriminator/' in var.name]
self.g_vars = [var for var in t_vars if 'generator/' in var.name]
with tf.variable_scope("counters") as counters_scope:
self.epoch = tf.Variable(-1, name='epoch', trainable=False)
self.increment_epoch = tf.assign(self.epoch, self.epoch+1)
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver(max_to_keep=8000)
def inference_graph(self):
if self.data_format == "NHWC":
self.images = tf.placeholder(tf.float32, [self.batch_size, self.output_size, self.output_size, self.c_dim], name='real_images')
else:
self.images = tf.placeholder(tf.float32, [self.batch_size, self.c_dim, self.output_size, self.output_size], name='real_images')
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
with tf.variable_scope("discriminator") as d_scope:
self.D,_ = self.discriminator(self.images, is_training=False)
with tf.variable_scope("generator") as g_scope:
self.G = self.generator(self.z, is_training=False)
with tf.variable_scope("counters") as counters_scope:
self.epoch = tf.Variable(-1, name='epoch', trainable=False)
self.increment_epoch = tf.assign(self.epoch, self.epoch+1)
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver(max_to_keep=8000)
def optimizer(self, learning_rate, beta1):
d_optim = tf.train.AdamOptimizer(learning_rate, beta1=beta1) \
.minimize(self.d_loss, var_list=self.d_vars, global_step=self.global_step)
g_optim = tf.train.AdamOptimizer(learning_rate, beta1=beta1) \
.minimize(self.g_loss, var_list=self.g_vars)
return tf.group(d_optim, g_optim, name="all_optims")
def generator(self, z, is_training):
map_size = self.output_size/int(2**self.ng_layers)
num_channels = self.gf_dim * int(2**(self.ng_layers -1))
# h0 = relu(BN(reshape(FC(z))))
z_ = linear(z, num_channels*map_size*map_size, 'h0_lin', transpose_b=self.transpose_b)
h0 = tf.reshape(z_, self._tensor_data_format(-1, map_size, map_size, num_channels))
bn0 = tf.contrib.layers.batch_norm(h0, is_training=is_training, scope='bn0', **self.batchnorm_kwargs)
h0 = tf.nn.relu(bn0)
chain = h0
for h in range(1, self.ng_layers):
# h1 = relu(BN(conv2d_transpose(h0)))
map_size *= self.stride
num_channels /= 2
chain = conv2d_transpose(chain,
self._tensor_data_format(self.batch_size, map_size, map_size, num_channels),
stride=self.stride, data_format=self.data_format, name='h%i_conv2d_T'%h)
chain = tf.contrib.layers.batch_norm(chain, is_training=is_training, scope='bn%i'%h, **self.batchnorm_kwargs)
chain = tf.nn.relu(chain)
# h1 = conv2d_transpose(h0)
map_size *= self.stride
hn = conv2d_transpose(chain,
self._tensor_data_format(self.batch_size, map_size, map_size, self.c_dim),
stride=self.stride, data_format=self.data_format, name='h%i_conv2d_T'%(self.ng_layers))
return tf.nn.tanh(hn)
def discriminator(self, image, is_training):
# h0 = lrelu(conv2d(image))
h0 = lrelu(conv2d(image, self.df_dim, self.data_format, name='h0_conv'))
chain = h0
for h in range(1, self.nd_layers):
# h1 = lrelu(BN(conv2d(h0)))
chain = conv2d(chain, self.df_dim*(2**h), self.data_format, name='h%i_conv'%h)
chain = tf.contrib.layers.batch_norm(chain, is_training=is_training, scope='bn%i'%h, **self.batchnorm_kwargs)
chain = lrelu(chain)
# h1 = linear(reshape(h0))
hn = linear(tf.reshape(chain, [self.batch_size, -1]), 1, 'h%i_lin'%self.nd_layers, transpose_b=self.transpose_b)
return tf.nn.sigmoid(hn), hn
def _labels(self):
with tf.name_scope("labels"):
ones = tf.ones([self.batch_size, 1])
zeros = tf.zeros([self.batch_size, 1])
flip_labels = tf.constant(self.flip_labels)
if self.flip_labels > 0:
prob = tf.random_uniform([], 0, 1)
d_label_real = tf.cond(tf.less(prob, flip_labels), lambda: zeros, lambda: ones)
d_label_fake = tf.cond(tf.less(prob, flip_labels), lambda: ones, lambda: zeros)
else:
d_label_real = ones
d_label_fake = zeros
return d_label_real, d_label_fake
def _tensor_data_format(self, N, H, W, C):
if self.data_format == "NHWC":
return [int(N), int(H), int(W), int(C)]
else:
return [int(N), int(C), int(H), int(W)]
def _check_architecture_consistency(self):
if self.output_size/2**self.nd_layers < 1:
print("Error: Number of discriminator conv. layers are larger than the output_size for this architecture")
exit(0)
if self.output_size/2**self.ng_layers < 1:
print("Error: Number of generator conv_transpose layers are larger than the output_size for this architecture")
exit(0)
def save_checkpoint(sess, saver, tag, checkpoint_dir, counter, step=False):
model_name = tag + '.model-'
if step:
model_name += 'step'
else:
model_name += 'epoch'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver.save(sess, os.path.join(checkpoint_dir, model_name), global_step=counter)
def load_checkpoint(sess, saver, tag, checkpoint_dir, counter=None, step=False):
print(" [*] Reading checkpoints...")
if step:
counter_name = 'step'
else:
counter_name = 'epoch'
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
if not counter==None:
ckpt_name_epoch = ckpt_name[:ckpt_name.find(counter_name)] + counter_name + '-%i'%counter
if os.path.exists(os.path.join(checkpoint_dir, ckpt_name_epoch+'.index')):
ckpt_name = ckpt_name_epoch
else:
print("Checkpoint for ", counter_name , counter_name, "doesn't exist. Using latest checkpoint instead!")
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
print(" [*] Success to read {}".format(ckpt_name))
return True
else:
print(" [*] Failed to find a checkpoint")
return False
def train_dcgan(data, config):
training_graph = tf.Graph()
with training_graph.as_default():
gan = dcgan(output_size=config.output_size,
batch_size=config.batch_size,
nd_layers=config.nd_layers,
ng_layers=config.ng_layers,
df_dim=config.df_dim,
gf_dim=config.gf_dim,
c_dim=config.c_dim,
z_dim=config.z_dim,
flip_labels=config.flip_labels,
data_format=config.data_format,
transpose_b=config.transpose_matmul_b)
save_every_step = True if config.save_every_step == 'True' else False
gan.training_graph()
update_op = gan.optimizer(config.learning_rate, config.beta1)
checkpoint_dir = os.path.join(config.checkpoint_dir, config.experiment)
with tf.Session() as sess:
writer = tf.summary.FileWriter('./logs/'+config.experiment+'/train', sess.graph)
init_op = tf.global_variables_initializer()
sess.run(init_op)
load_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir, step=save_every_step)
epoch = sess.run(gan.increment_epoch)
start_time = time.time()
for epoch in range(epoch, epoch + config.epoch):
perm = np.random.permutation(data.shape[0])
num_batches = data.shape[0] // config.batch_size
for idx in range(0, num_batches):
batch_images = data[perm[idx*config.batch_size:(idx+1)*config.batch_size]]
_, g_sum, d_sum = sess.run([update_op, gan.g_summary, gan.d_summary],
feed_dict={gan.images: batch_images})
global_step = gan.global_step.eval()
writer.add_summary(g_sum, global_step)
writer.add_summary(d_sum, global_step)
## Uncomment this (and comment out the lines below) to save every step:
#save_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir, global_step, step=True)
if save_every_step:
save_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir, global_step, step=True)
if config.verbose:
errD_fake = gan.d_loss_fake.eval()
errD_real = gan.d_loss_real.eval({gan.images: batch_images})
errG = gan.g_loss.eval()
print("Epoch: [%2d] Step: [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
% (epoch, idx, num_batches, time.time() - start_time, errD_fake+errD_real, errG))
elif global_step%100 == 0:
print("Epoch: [%2d] Step: [%4d/%4d] time: %4.4f"%(epoch, idx, num_batches, time.time() - start_time))
# save a checkpoint every epoch
## Save only every 100th epoch (uncomment if it breaks):
if epoch % 100 == 0:
save_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir, epoch, step=True)
sess.run(gan.increment_epoch)
### A function to load the checkpoint:
def Loader(checkpoint_dir_pt ,checkpoint_epoch, output_size = 256, z = 256):
'''
Initiates a tensorflow session and loads the input checkpoint at a given epoch.
Also produces a batch of samples corresponding to the newest.
'''
with tf.Graph().as_default() as g:
with tf.Session(graph=g) as sess:
gan = dcgan(output_size=output_size,
nd_layers=4,
ng_layers=4,
df_dim=64,
gf_dim=64,
z_dim=z,
data_format="NHWC")
gan.inference_graph()
load_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir_pt, counter=checkpoint_epoch)
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'discriminator/' in var.name]
g_vars = [var for var in t_vars if 'generator/' in var.name]
g_vars = [(sess.run(var), var.name) for var in g_vars]
d_vars = [(sess.run(var), var.name) for var in d_vars]
with tf.Graph().as_default() as g:
with tf.Session(graph=g) as sess:
gan = dcgan(output_size=output_size,
nd_layers=4,
ng_layers=4,
df_dim=64,
gf_dim=64,
z_dim=z,
data_format="NHWC")
gan.inference_graph()
load_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir_pt, counter=checkpoint_epoch)
z_sample = np.random.normal(size=(gan.batch_size, gan.z_dim))
#z_sample = np.random.normal(size=(batch_size, gan.z_dim))
samples = sess.run(gan.G, feed_dict={gan.z: z_sample})
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'discriminator/' in var.name]
g_vars = [var for var in t_vars if 'generator/' in var.name]
g_vars = [(sess.run(var), var.name) for var in g_vars]# if 'g_h' in var.name]
d_vars = [(sess.run(var), var.name) for var in d_vars]#if 'd_h' in var.name]
return z_sample, samples
def get_data():
data = np.load(config.datafile, mmap_mode='r')
if config.data_format == 'NHWC':
data = np.expand_dims(data, axis=-1)
else: # 'NCHW'
data = np.expand_dims(data, axis=1)
return data
def binavg(pk,k_min, k_max, kgrid,nkbins):
'''
Bin averaging for the powerspectrum calculations
'''
kgrid[0,0] = 1.0
ikbin = np.digitize(kgrid,np.linspace(k_min,k_max,nkbins+1),right=False)
nmodes,pkavg,kmean = np.zeros(nkbins,dtype=int),np.full(nkbins,0.),np.full(nkbins,0.)
for ik in range(nkbins):
nmodes[ik] = int(np.sum(np.array([ikbin == ik+1])))
if (nmodes[ik] > 0):
pkavg[ik] = np.mean(pk[ikbin == ik+1])
kmean[ik] = np.mean(kgrid[ikbin == ik+1])
return pkavg, nmodes, kmean
def powerspectrum_ensemble(data1, data2, k_min=0, k_max=1,nkbins=11, h = 0.7 ):
'''
A function to calculate the powerspectrum for a 2-D overdensity field.
k_max = 256*pi/512 ##the Nyquist frequency calculated using the number of pixes * pi/physical length of the array
to find and estimate for this calculate the fundamental frequency kf = 2*pi/Vbox^1/3
'''
kx = 2. * np.pi * np.fft.fftfreq(256, d=1.0)
ky = 2. * np.pi * np.fft.fftfreq(256, d=1.0)
kgrid = np.sqrt(kx[:,np.newaxis]**2.0 + kx[np.newaxis,:]**2.0)
plt.figure(1)
for i in range(len(data1)):
delta_r = data1[i]
delta_k = np.fft.fftn(delta_r)
pk = np.real(delta_k * np.conj(delta_k))
pkavg, nmodes, kmean = binavg(pk,k_min, k_max, kgrid, nkbins)
delta_r2 = data2[i]
delta_k2 = np.fft.fftn(delta_r2)
pk2 = np.real(delta_k2 * np.conj(delta_k2))
pkavg2, nmodes2, kmean2 = binavg(pk2,k_min, k_max, kgrid, nkbins)
plt.plot(kmean*h,pkavg, label ='P(k) for data1', color = 'red', alpha = 0.4)
plt.plot(kmean2*h, pkavg2, label = 'P(k) for data2', color = 'blue', alpha = 0.4)
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$k$ $[h$ $Mpc^{-1}]$', fontsize = 13)
plt.ylabel('P(k)', fontsize = 13)
plt.tick_params(right=True, top=True, direction='in', which = 'both')
plt.tick_params(which='major', length=4)
plt.tight_layout()
plt.legend(['Training data', 'Gan-produced'], fontsize = 11)
plt.tight_layout()
plt.show()
def powerspectrum_mean_std(data, k_min=0, k_max=1,nkbins=11, h = 0.7):
'''
Calculates the mean + standard deviation of an ensemble of cw slices/WL maps
'''
## Defining the grid in 2-D:
kx = 2. * np.pi * np.fft.fftfreq(256, d=1.0)
ky = 2. * np.pi * np.fft.fftfreq(256, d=1.0)
kgrid = np.sqrt(kx[:,np.newaxis]**2.0 + kx[np.newaxis,:]**2.0)
kmeans= [] ## arrays to store each powerspectrum
pkavgs = []
for i in data:
delta_r = i
delta_k = np.fft.fftn(delta_r)
pk = np.real(delta_k * np.conj(delta_k))
pkavg, nmodes, kmean = binavg(pk,k_min, k_max, kgrid, nkbins)
## Storing the results:
kmeans.append(kmean)
pkavgs.append(pkavg)
return kmeans,pkavgs
def Load_samples(z_sample, checkpoint_dir_pt, checkpoint_epoch, output_size=256, z = 64):
with tf.Graph().as_default() as g:
with tf.Session(graph=g) as sess:
gan = dcgan(output_size=output_size,
nd_layers=4,
ng_layers=4,
df_dim=64,
gf_dim=64,
z_dim=z,
data_format="NHWC")
gan.inference_graph()
load_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir_pt, counter=checkpoint_epoch)
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'discriminator/' in var.name]
g_vars = [var for var in t_vars if 'generator/' in var.name]
g_vars = [(sess.run(var), var.name) for var in g_vars]
d_vars = [(sess.run(var), var.name) for var in d_vars]
with tf.Graph().as_default() as g:
with tf.Session(graph=g) as sess:
gan = dcgan(output_size=output_size,
nd_layers=4,
ng_layers=4,
df_dim=64,
gf_dim=64,
z_dim=z,
data_format="NHWC")
gan.inference_graph()
load_checkpoint(sess, gan.saver, 'dcgan', checkpoint_dir_pt, counter=checkpoint_epoch)
# z_sample = np.random.normal(size=(gan.batch_size, gan.z_dim))
samples = sess.run(gan.G, feed_dict={gan.z: z_sample})
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'discriminator/' in var.name]
g_vars = [var for var in t_vars if 'generator/' in var.name]
g_vars = [(sess.run(var), var.name) for var in g_vars]# if 'g_h' in var.name]
d_vars = [(sess.run(var), var.name) for var in d_vars]#if 'd_h' in var.name]
return samples
def Z_interpolate(Z1,Z2, batch_size, vector_size):
'''
A function that reads in two points in N-dimensional space (default = 256)
Z1 and Z2 and finds a number of intermediate points on the line connecting
the two points.
'''
Z_int = np.ones((batch_size,vector_size))
for i in range(0,vector_size):
Z_delta = np.linspace(Z1[i], Z2[i],num = batch_size)
for j in range(0,batch_size):
Z_int[j][i] = Z_delta[j]
return Z_int
def powerspectrum_i(data, color, alpha = 1.0, label = None):
## Defining the grid in 2-D:
kx = 2. * np.pi * np.fft.fftfreq(256, d=1.0)
ky = 2. * np.pi * np.fft.fftfreq(256, d=1.0)
kgrid = np.sqrt(kx[:,np.newaxis]**2.0 + kx[np.newaxis,:]**2.0)
k_min = 0.0
k_max = 1.0 ## k_max = 256*pi/512 ##the Nyquist frequency calculated using the number of pixes * pi/physical length of the array
nkbins = 11 ## to find and estimate for this calculate the fundamental frequency kf = 2*pi/Vbox^1/3
## --> in our case kf = 2*pi/Area_box^{1/2}. And then kmax-kmin/kf ~ nkbins
## For data1:
delta_r = data
delta_k = np.fft.fftn(delta_r)
pk = np.real(delta_k * np.conj(delta_k))
pkavg, nmodes, kmean = binavg(pk,k_min, k_max, kgrid,nkbins)
h = 0.7
## Plotting the results:
plt.figure(1,figsize=(5.5,4.5))
plt.plot(kmean,pkavg, color = color, alpha = alpha, label = label) ## Need to figure out the units here
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$k$ [h $\mathrm{Mpc^{-1}}$]', fontsize = 13)
plt.ylabel(r'$P(k)$', fontsize = 13)
plt.tick_params(right=True, top=True, direction='in', which = 'both')
plt.tick_params(which='major', length=4)
plt.tight_layout()