-
Notifications
You must be signed in to change notification settings - Fork 128
/
unetpp.py
114 lines (96 loc) · 4.67 KB
/
unetpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from torch import nn
from torch.nn import functional as F
import torch
from torchvision import models
import torchvision
class DoubleConv(nn.Module):
def __init__(self, in_ch, out_ch):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, input):
return self.conv(input)
# class VGGBlock(nn.Module):
# def __init__(self, in_channels, middle_channels, out_channels, act_func=nn.ReLU(inplace=True)):
# super(VGGBlock, self).__init__()
# self.act_func = act_func
# self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
# self.bn1 = nn.BatchNorm2d(middle_channels)
# self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
# self.bn2 = nn.BatchNorm2d(out_channels)
#
# def forward(self, x):
# out = self.conv1(x)
# out = self.bn1(out)
# out = self.act_func(out)
#
# out = self.conv2(out)
# out = self.bn2(out)
# out = self.act_func(out)
# return out
class NestedUNet(nn.Module):
def __init__(self, args,in_channel,out_channel):
super().__init__()
self.args = args
nb_filter = [32, 64, 128, 256, 512]
self.pool = nn.MaxPool2d(2, 2)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv0_0 = DoubleConv(in_channel, nb_filter[0])
self.conv1_0 = DoubleConv(nb_filter[0], nb_filter[1])
self.conv2_0 = DoubleConv(nb_filter[1], nb_filter[2])
self.conv3_0 = DoubleConv(nb_filter[2], nb_filter[3])
self.conv4_0 = DoubleConv(nb_filter[3], nb_filter[4])
self.conv0_1 = DoubleConv(nb_filter[0]+nb_filter[1], nb_filter[0])
self.conv1_1 = DoubleConv(nb_filter[1]+nb_filter[2], nb_filter[1])
self.conv2_1 = DoubleConv(nb_filter[2]+nb_filter[3], nb_filter[2])
self.conv3_1 = DoubleConv(nb_filter[3]+nb_filter[4], nb_filter[3])
self.conv0_2 = DoubleConv(nb_filter[0]*2+nb_filter[1], nb_filter[0])
self.conv1_2 = DoubleConv(nb_filter[1]*2+nb_filter[2], nb_filter[1])
self.conv2_2 = DoubleConv(nb_filter[2]*2+nb_filter[3], nb_filter[2])
self.conv0_3 = DoubleConv(nb_filter[0]*3+nb_filter[1], nb_filter[0])
self.conv1_3 = DoubleConv(nb_filter[1]*3+nb_filter[2], nb_filter[1])
self.conv0_4 = DoubleConv(nb_filter[0]*4+nb_filter[1], nb_filter[0])
self.sigmoid = nn.Sigmoid()
if self.args.deepsupervision:
self.final1 = nn.Conv2d(nb_filter[0], out_channel, kernel_size=1)
self.final2 = nn.Conv2d(nb_filter[0], out_channel, kernel_size=1)
self.final3 = nn.Conv2d(nb_filter[0], out_channel, kernel_size=1)
self.final4 = nn.Conv2d(nb_filter[0], out_channel, kernel_size=1)
else:
self.final = nn.Conv2d(nb_filter[0], out_channel, kernel_size=1)
def forward(self, input):
x0_0 = self.conv0_0(input)
x1_0 = self.conv1_0(self.pool(x0_0))
x0_1 = self.conv0_1(torch.cat([x0_0, self.up(x1_0)], 1))
x2_0 = self.conv2_0(self.pool(x1_0))
x1_1 = self.conv1_1(torch.cat([x1_0, self.up(x2_0)], 1))
x0_2 = self.conv0_2(torch.cat([x0_0, x0_1, self.up(x1_1)], 1))
x3_0 = self.conv3_0(self.pool(x2_0))
x2_1 = self.conv2_1(torch.cat([x2_0, self.up(x3_0)], 1))
x1_2 = self.conv1_2(torch.cat([x1_0, x1_1, self.up(x2_1)], 1))
x0_3 = self.conv0_3(torch.cat([x0_0, x0_1, x0_2, self.up(x1_2)], 1))
x4_0 = self.conv4_0(self.pool(x3_0))
x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1))
x2_2 = self.conv2_2(torch.cat([x2_0, x2_1, self.up(x3_1)], 1))
x1_3 = self.conv1_3(torch.cat([x1_0, x1_1, x1_2, self.up(x2_2)], 1))
x0_4 = self.conv0_4(torch.cat([x0_0, x0_1, x0_2, x0_3, self.up(x1_3)], 1))
if self.args.deepsupervision:
output1 = self.final1(x0_1)
output1 = self.sigmoid(output1)
output2 = self.final2(x0_2)
output2 = self.sigmoid(output2)
output3 = self.final3(x0_3)
output3 = self.sigmoid(output3)
output4 = self.final4(x0_4)
output4 = self.sigmoid(output4)
return [output1, output2, output3, output4]
else:
output = self.final(x0_4)
output = self.sigmoid(output)
return output