-
Notifications
You must be signed in to change notification settings - Fork 0
/
modelisation_directionnel_v3.py
273 lines (226 loc) · 12.5 KB
/
modelisation_directionnel_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# -*- coding: utf-8 -*-
import numpy as np
import scipy.ndimage as nd
import scipy.optimize as opt
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit, leastsq
from matplotlib import rc
import math as math
rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':16, 'weight':'bold'})
rc('text', usetex=True)
#### cptmt des matrices seules
SC37=[0.086,0.003]
dragon=[0.014,0.0007]
#### cptmt des composites
CO_SC37=[0.34,0.62]
C1_SC37=[0.09,0.15]
CO_dragon=[0.1,0.54]
C1_dragon=[0.13,0.2]
def model_MR2(element,C1,C2):
return 2.*(element-(1./element**2))*(C1+2*C2*((element**2)+(2/element)-3))
def vi(strain,u1,u2,u3,N):
return np.sqrt((u1**2.*strain**2.+(u2**2.+u3**2.)/(strain))/N) #elongation projetée sur direction ui
def vi_bis(strain,theta, u1,u2,u3):
### fonction de passage de la déformation dans la base matérielle
P=np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]])
mat=np.dot(np.transpose(P), np.dot(strain, P))
u=np.array([[u1,u2,u3]])
produit=np.dot(u, mat)
return np.sqrt(np.dot(produit,np.transpose(produit)))
def vi_struct(strain, theta, u1,u2,u3):
P=np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]])
mat=np.dot(np.transpose(P), np.dot(strain, P))
vu=np.zeros_like(u1)
proj1= np.dot(mat, np.array([u1[1], u2[1],u3[1]]))
proj2= np.dot(mat, np.array([u1[2], u2[2],u3[2]]))
for i in [1,2,4,5]:
vu[i]=vi_bis(strain, theta, u1[i], u2[i],u3[i])
vu[0]=1/2.*np.sqrt(vu[1]**2+vu[2]**2+np.dot(proj1, np.transpose(proj2))+np.dot(proj2, np.transpose(proj1)))
vu[3]=vu[0]
return vu
def approx_pade(C,N,vi):
return C/(N**(3./2.))*vi*(3.-vi**2.)/(1.-vi**2.)
def transfo_ellipse(x,y,a,b,theta):
return a*np.cos(theta)*x-b*np.sin(theta)*y, a*np.sin(theta)*x+b*np.cos(theta)*y
def approx_boyce(N,vi):
vivi=vi/np.sqrt(N)
return vi*(3+9*vivi/5.+297.*vivi**(2)/175.+1539/875.*vivi**3+126117*(vivi**4)/67375.+43733439*vivi**6/21896875.)
def grospate(C,N,vi):
return C/(N**(3./2.))*(3.-vi**2.)/(1.-vi**2.)
##orientation et poids matrice isotrope
u1m=np.array([math.cos(i*np.pi/6+np.pi/2) for i in range(12)])
u2m=np.array([math.sin(i*np.pi/6+np.pi/2) for i in range(12)])
u3m=np.array([0 for i in range(12)])
### orientations matérielles
n=np.array([0.,np.cos(np.pi/3.),np.cos(np.pi/3),0.,-np.cos(np.pi/3),-np.cos(np.pi/3)]) #exemple avec seulement 6 directions
t=np.array([1.,np.sin(np.pi/3.),-np.sin(np.pi/3),-1.,-np.sin(np.pi/3),np.sin(np.pi/3)])
z=np.array([0.,0.,0.,0.,0.,0.])
### orientations star
nstar=np.array([1.,np.cos(np.pi/6.),np.cos(np.pi/6.),-1.,-np.cos(np.pi/6.),-np.cos(np.pi/6.)]) #exemple avec seulement 6 directions
tstar=np.array([0.,np.sin(np.pi/6.),-np.sin(np.pi/6.),0.,-np.sin(np.pi/6.),np.sin(np.pi/6.)])
zstar=np.array([0.,0.,0.,0.,0.,0.])
def err_matrice(p,stress_1, strain, u1m=u1m, u2m=u2m, u3m=u3m):
func_sens1=np.zeros_like(stress_1)
func_sens2=np.zeros_like(stress_1)
for j in range(len(strain)):
mat_strain=np.array([[strain[j],0,0],[0,1/np.sqrt(strain[j]),0],[0,0,1/np.sqrt(strain[j])]])
###matrice : elastomere isotrope
Wm1=[1/12.*(strain[j]*u1m[i]**2.-(strain[j])**(-2.)*u2m[i]**2.)*(grospate(p[0],p[1],vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i])/np.sqrt(p[1]))) for i in range(len(u1m))]
Wm2=[1/12.*(strain[j]*u2m[i]**2.-(strain[j])**(-2.)*u1m[i]**2.)*(grospate(p[0],p[1],vi_bis(mat_strain,np.pi/2,u1m[i],u2m[i],u3m[i])/np.sqrt(p[1]))) for i in range(len(u1m))]
#Wm1=[1/12.*(strain[j]*u1m[i]**2.-(strain[j])**(-2.)*u2m[i]**2.)*(
#1/vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i]))*(approx_boyce(p[0],vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i]))) for i in range(len(u1m))]
#Wm2=[1/12.*np.sqrt(p[0])*(strain[j]*u2m[i]**2.-(strain[j])**(-2.)*u1m[i]**2.)*(
#1/vi_bis(strain[j],np.pi/2,u1m[i],u2m[i],u3m[i]))*(approx_boyce(p[0],vi_bis(strain[j],np.pi/2,u1m[i],u2m[i],u3m[i]))) for i in range(len(u1m))]
func_sens1[j]=sum(Wm1)
func_sens2[j]=sum(Wm2)
res_sens1=stress_1-func_sens1
res_sens2=stress_1-func_sens2
return sum(res_sens1*res_sens1+res_sens2*res_sens2)
plt.ion()
### deformation
strain_matrice = np.arange(1.0,2.,0.01)
strain=np.arange(1.0,1.5,0.01)
### matrice
stress_matrice_dragon=model_MR2(strain_matrice,0.014,0.0007)
stress_matrice_SC37=model_MR2(strain_matrice,0.086,0.003)
### composite
stress_sens1 = model_MR2(strain, CO_dragon[0],C1_dragon[0])
stress_sens2 = model_MR2(strain, CO_dragon[1],C1_dragon[1])
C0_SC37=[0.34,0.62]
C1_SC37=[0.09,0.15]
C0_dragon=[0.1,0.54]
C1_dragon=[0.13,0.2]
###identif paramètre matrices A et B
bounds_matrix=((0,None),(0,None))
p0=[5,5]
P_dragon=opt.minimize(err_matrice,p0,args=(stress_matrice_dragon, strain_matrice,u1m,u2m,u3m),method='SLSQP')
coeff_dragon=P_dragon.x
P_SC37=opt.minimize(err_matrice,p0,args=(stress_matrice_SC37, strain_matrice,u1m,u2m,u3m),method='SLSQP')
coeff_SC37=P_SC37.x
dragon=np.zeros_like(strain_matrice)
SC37=np.zeros_like(strain_matrice)
for j in range(len(strain_matrice)):
mat_strain=np.array([[strain_matrice[j],0,0],[0,1/np.sqrt(strain_matrice[j]),0],[0,0,1/np.sqrt(strain_matrice[j])]])
Wm1=[1/12.*(strain_matrice[j]*u1m[i]**2.-(strain_matrice[j])**(-2.)*u2m[i]**2.)*(
grospate(coeff_dragon[0],coeff_dragon[1],vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i])/np.sqrt(coeff_dragon[1]))) for i in range(len(u1m))]
Wm2=[1/12.*(strain_matrice[j]*u1m[i]**2.-(strain_matrice[j])**(-2.)*u2m[i]**2.)*(
grospate(coeff_SC37[0],coeff_SC37[1],vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i])/np.sqrt(coeff_SC37[1]))) for i in range(len(u1m))]
dragon[j]=sum(Wm1)
SC37[j]=sum(Wm2)
plt.figure()
plt.plot(strain_matrice, stress_matrice_SC37,'b',label='matrice A expe');plt.plot(strain_matrice, SC37, 'b--',linewidth=3, label='matrice A model')
plt.plot(strain_matrice, stress_matrice_dragon,'r',label='matrice B expe');plt.plot(strain_matrice, dragon, 'r--', linewidth=3,label='matrice B model')
plt.ylim(ymin=0);plt.xlim(xmin=1)
plt.xlabel('Strain (mm/mm)');plt.ylabel('Stress (MPa)')
plt.legend(loc=2);plt.title('Identification matrice')
def err_wifix(p,stress_1, stress_2, strain, C, N, u1m=u1m, u2m=u2m, u3m=u3m, n=n, t=t, u3=z, nstar=nstar, tstar=tstar, zstar=zstar):
phi=p[5]
corr=stress_2[-1]/stress_1[-1]
func_sens1=np.zeros_like(stress_1)
func_sens2=np.zeros_like(stress_1)
### poids à optimiser
#p[1]=2*p[0]/3.
wi=np.array([p[0],p[1],p[1],p[0],p[1],p[1]])
N_mat=np.array([p[2],p[3],p[3],p[2],p[3],p[3]])
wm=np.array([p[4],p[4],p[4],p[4],p[4],p[4]])
for j in range(len(strain)):
mat_strain=np.array([[strain[j],0,0],[0,1/np.sqrt(strain[j]),0],[0,0,1/np.sqrt(strain[j])]])
###matrice : elastomere isotrope
Wm1=[1/12.*(strain[j]*u1m[i]**2.-(strain[j])**(-2.)*u2m[i]**2.)*(grospate(C,N,vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i])/np.sqrt(N))) for i in range(len(u1m))]
### tricot imprégné sens 1
Wt1=[wi[i]*np.sqrt(N_mat[i])*(1/vi_struct(mat_strain,0,n,t,z)[i])*(strain[j]*n[i]**2.-(strain[j])**(-2.)*t[i]**2.)*(
approx_boyce(N_mat[i],vi_struct(mat_strain,0,n,t,z)[i])) for i in range(len(n))]
Wl1=[1/12.*(strain[j]*nstar[i]**2.-(strain[j])**(-2.)*tstar[i]**2.)*(
grospate(C,N,vi_bis(mat_strain,0,nstar[i],tstar[i],zstar[i])/np.sqrt(N))) for i in range(len(nstar))]
### tricot imprégné sens 2
Wt2=[wi[i]*np.sqrt(N_mat[i])*(1/vi_struct(mat_strain,np.pi/2,n,t,z)[i])*(strain[j]*t[i]**2.-(strain[j])**(-2.)*n[i]**2.)*(
approx_boyce(N_mat[i],vi_struct(mat_strain,np.pi/2,n,t,z)[i])) for i in range(len(n))]
Wl2=[1/12.*(strain[j]*tstar[i]**2.-(strain[j])**(-2.)*nstar[i]**2.)*(
grospate(C,N,vi_bis(mat_strain,np.pi/2,nstar[i],tstar[i],zstar[i])/np.sqrt(N))) for i in range(len(nstar))]
func_sens1[j]=phi*(sum(Wt1)+sum(Wl1))+(1-phi)*sum(Wm1)
func_sens2[j]=phi*(sum(Wt2)+sum(Wl2))+(1-phi)*sum(Wm1)
res_sens1=stress_1-func_sens1+func_sens1[0]
res_sens2=stress_2-func_sens2+func_sens2[0]
return sum(res_sens1*res_sens1+res_sens2*res_sens2/corr)
cons = (
#{'type' : 'ineq','fun' : lambda x : np.array(x[1]-2*x[0]/3.)},
{'type' : 'eq','fun' : lambda x : np.array(2*x[0]+4*x[1]-0.5)},
#{'type' : 'ineq','fun' : lambda x : np.array(x[1]-0.05)}
)
bnds = ((0,None), (0.01,None), (0,None),(0,None),(0,None),(0,1))
p0=[0.1,0.1,5,50,0.1,0.2] # Cc, Nc, Ce, Ne, Fc, Fe
P=opt.minimize(err_wifix,p0,args=(stress_sens1, stress_sens2,strain,coeff_dragon[0],coeff_dragon[1],u1m,u2m,u3m,n,t,z,nstar,tstar,zstar),method='SLSQP',bounds=bnds,constraints=cons)
coeff=P.x
wi=np.array([P.x[0],P.x[1],P.x[1],P.x[0],P.x[1],P.x[1]])
N_mat=np.array([P.x[2],P.x[3],P.x[3],P.x[2],P.x[3],P.x[3]])
estim=np.zeros_like(strain)
estim_trame=np.zeros_like(strain)
tricot_t=np.zeros_like(strain)
tricot_c=np.zeros_like(strain)
C,N=coeff_dragon[0],coeff_dragon[1]
###modelisation composite dragon
for j in range(len(strain)):
phi=P.x[5]
## tenseur de def
mat_strain=np.array([[strain[j],0,0],[0,1/np.sqrt(strain[j]),0],[0,0,1/np.sqrt(strain[j])]])
###matrice : elastomere isotrope
Wm1=[1/12.*(strain[j]*u1m[i]**2.-(strain[j])**(-2.)*u2m[i]**2.)*(grospate(C,N,vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i])/np.sqrt(N))) for i in range(len(u1m))]
### sens 1
Wt1=[wi[i]*np.sqrt(N_mat[i])*(1/vi_struct(mat_strain,0,n,t,z)[i])*(strain[j]*n[i]**2.-(strain[j])**(-2.)*t[i]**2.)*(
approx_boyce(N_mat[i],vi_struct(mat_strain,0,n,t,z)[i])) for i in range(len(n))]
Wl1=[1./12*(strain[j]*nstar[i]**2.-(strain[j])**(-2.)*tstar[i]**2.)*(
grospate(C,N,vi_bis(mat_strain,0,nstar[i],tstar[i],zstar[i])/np.sqrt(N))) for i in range(len(nstar))]
### sens 2
Wt2=[wi[i]*np.sqrt(N_mat[i])*(1/vi_struct(mat_strain,np.pi/2,n,t,z)[i])*(
strain[j]*t[i]**2.-(strain[j])**(-2.)*n[i]**2.)*(approx_boyce(N_mat[i],vi_struct(mat_strain,np.pi/2,n,t,z)[i])) for i in range(len(n))]
Wl2=[1./12*(strain[j]*tstar[i]**2.-(strain[j])**(-2.)*nstar[i]**2.)*(
grospate(C,N,vi_bis(mat_strain,np.pi/2,nstar[i],tstar[i],zstar[i])/np.sqrt(N))) for i in range(len(nstar))]
estim[j]=phi*(sum(Wt1)+sum(Wl1))+(1-phi)*sum(Wm1)
estim_trame[j]=phi*(sum(Wt2)+sum(Wl2))+(1-phi)*sum(Wm1)
tricot_t[j]=sum(Wt1)
tricot_c[j]=sum(Wl1)
plt.figure()
plt.plot(strain,stress_sens1,'r',label='Exp: weft direction')
plt.plot(strain,estim-estim[0],'r--',linewidth=2,label='Model: weft')
#plt.plot(strain, tricot,'k')
#plt.plot(strain, polym,'g')
plt.plot(strain, stress_sens2,'b', label='Exp: warp direction')
plt.plot(strain,estim_trame-estim_trame[0],'b--',linewidth=2,label='Model: warp')
#plt.plot(strain2,estim2,'b',label='Modelisation')
plt.grid();plt.legend(loc=5,prop={'family': 'serif', 'size':15});plt.ylabel('Stress (MPa)');plt.xlabel('Strain (mm/mm)');
plt.title('Optimisation du modele directionnel\nsur le composite tricot matrice B')
model_compBc=np.zeros_like(strain)
model_compBt=np.zeros_like(strain)
C2,N2=coeff_SC37[0],coeff_SC37[1]
###modelisation composite SC37
for j in range(len(strain)):
phi=P.x[5]
## tenseur de def
mat_strain=np.array([[strain[j],0,0],[0,1/np.sqrt(strain[j]),0],[0,0,1/np.sqrt(strain[j])]])
###matrice : elastomere isotrope
Wm1=[1/12.*(strain[j]*u1m[i]**2.-(strain[j])**(-2.)*u2m[i]**2.)*(grospate(C2,N2,vi_bis(mat_strain,0,u1m[i],u2m[i],u3m[i])/np.sqrt(N2))) for i in range(len(u1m))]
### sens 1
Wt1=[wi[i]*np.sqrt(N_mat[i])*(1/vi_struct(mat_strain,0,n,t,z)[i])*(strain[j]*n[i]**2.-(strain[j])**(-2.)*t[i]**2.)*(
approx_boyce(N_mat[i],vi_struct(mat_strain,0,n,t,z)[i])) for i in range(len(n))]
Wl1=[1/12.*(strain[j]*nstar[i]**2.-(strain[j])**(-2.)*tstar[i]**2.)*(
grospate(C2,N2,vi_bis(mat_strain,0,nstar[i],tstar[i],zstar[i])/np.sqrt(N2))) for i in range(len(nstar))]
### sens 2
Wt2=[wi[i]*np.sqrt(N_mat[i])*(1/vi_struct(mat_strain,np.pi/2,n,t,z)[i])*(
strain[j]*t[i]**2.-(strain[j])**(-2.)*n[i]**2.)*(approx_boyce(N_mat[i],vi_struct(mat_strain,np.pi/2,n,t,z)[i])) for i in range(len(n))]
Wl2=[1/12.*(strain[j]*tstar[i]**2.-(strain[j])**(-2.)*nstar[i]**2.)*(
grospate(C2,N2,vi_bis(mat_strain,np.pi/2,nstar[i],tstar[i],zstar[i])/np.sqrt(N2))) for i in range(len(nstar))]
model_compBc[j]=phi*(sum(Wt1)+sum(Wl1))+(1-phi)*sum(Wm1)
model_compBt[j]=phi*(sum(Wt2)+sum(Wl2))+(1-phi)*sum(Wm1)
plt.figure()
plt.plot(strain, model_MR2(strain, C0_SC37[0],C1_SC37[0]), 'r', label='Exp: weft direction')
plt.plot(strain,model_compBc-model_compBc[0] ,'r--',label='model: weft')
#plt.figure()
plt.plot(strain, model_MR2(strain, C0_SC37[1],C1_SC37[1]), 'b', label = 'Exp: Warp direction')
plt.plot(strain,model_compBt-model_compBt[0] ,'b--', label='model: warp')
plt.xlabel('Strain');plt.ylabel('Stress (Mpa)')
plt.legend(loc=2); plt.grid()
plt.title('Injection du cptmt tricot impregB dans la matrice A\nComparaison aux valeurs expe');
plt.figure()
plt.plot(strain, abs((model_MR2(strain, C0_SC37[0],C1_SC37[0])-(model_compBc-model_compBc[0]))/model_MR2(strain, C0_SC37[0],C1_SC37[0])), 'g')
#plt.show()
##np.savetxt('coeff_mod_direct_E1582_dragon.txt', coeff)