-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconstruction.py
executable file
·53 lines (41 loc) · 1.19 KB
/
construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import networkx as nx
import numpy as np
import pandas as pd
def load_data(path,sep=" "):
"""load the cvs file representing the temporal graph
Parameters:
path (string): path of the input dataset
Returns:
np.array: a np array with the loaded data
"""
data = pd.read_csv(filepath_or_buffer=path,sep=sep,names=["t","a","b"])
return(data)
def individuals(data):
res = []
res.extend(np.unique(data.a))
res.extend(np.unique(data.b))
return(np.unique(res))
def build_graphs(data,gap=19,with_labels=False,meta_path=None):
graphs = []
G=nx.Graph()
nodes = individuals(data)
G.add_nodes_from(nodes)
splitted_data = split_input_data(data,gap)
for t in splitted_data:
g = G.copy()
for _,i,j in t:
if not i == j:
g.add_edge(i,j)
graphs.append(g)
return(graphs)
def split_input_data(data, gap=19):
times = [int(x/(gap+1)) for x in data.t]
data.t = times
splitted_data = []
c = 0
for i in range(max(times)+1):
tmp = data[data.t == i].to_numpy()
if tmp.shape[0] == 0:
tmp = [[i,0,0]]
splitted_data.append(tmp)
return splitted_data