-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
298 lines (270 loc) · 9.28 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
% !TEX program = lualatex
\documentclass{beamer}
\usepackage{tikz}
\usepackage{tikzscale}
\usetikzlibrary{decorations.pathmorphing}
\title{Coarse Graining Holographic Black Holes}
\subtitle{Engelhardt \& Wall 2018}
\date{}
\author{William Arnold}
\DeclareMathOperator{\Area}{Area}
\DeclareMathOperator{\tr}{tr}
\newcommand{\Sout}{S^{(outer)}}
\newcommand{\thk}{\theta_{(k)}}
\newcommand{\thl}{\theta_{(l)}}
\newcommand{\rhoa}{\rho_B^{(\alpha)}}
\begin{document}
\frame[plain]{\titlepage}
\begin{frame}{HRT is great but...}
HRT as fine-grained entropy
$$
S_{vN} = \frac{\Area[X]}{4G \hbar}
$$
\vfill
Limitations:
\begin{itemize}[<+(1)->]
\item Time-independent (works on any Cauchy slice)
\item No notion of changing horizon area
\item No generalized second law
\item Can't interpret changing area as entropy
\item Need to coarse-grain over thermalized degrees of freedom
\end{itemize}
\vfill
\end{frame}
\begin{frame}{Entropy for any surface?}
\begin{columns}
\begin{column}{0.4 \linewidth}
\begin{itemize}[<+(1)->]
\item Pick a (compact) Cauchy-splitting surface $\sigma$
\item Fix data on $\Sigma_{out}$
\item This fixes the outer wedge $Ow[\sigma]$
\item Forget everything else
\item Glue another spacetime, $\alpha$, inside
\item Now have $\Sigma = \Sigma_{in}^{(\alpha)} \cup \Sigma{out}$
\item IVP $\rightarrow$ full spacetime
\item Some state $\rho_B^{(\alpha)}$ on boundary
\item Compute $S_{vN}[\rho_B^{(\alpha)}]$!
\end{itemize}
\end{column}
\begin{column}{0.6 \linewidth}
\only<1-4>{
\include{figures/holobh.tex}
}
\only<5->{
\include{figures/ow_recon.tex}
}
\end{column}
\end{columns}
\end{frame}
\hfuzz=5.002pt
\begin{frame}
Can define a new entropy for \textit{any} surface homologous to $B$
$$\Sout[\sigma] = \max_{\{\alpha\}} \left[-\tr \left(\rho_B^{(\alpha)}\ln\rho_B^{(\alpha)} \right) \right]$$
\onslide<2->{
$\alpha \in$ all possible spacetimes created from an inner wedge
}
\onslide<3->{
For an HRT Surface, $X$,
$$
\Sout[X] = -\tr \left( \rho_B \ln \rho_B \right) = \frac{\Area[X]}{4G \hbar}
$$
}
\end{frame}
\begin{frame}{Surfaces}
\begin{columns}
\begin{column}{0.6 \linewidth}
What about other surfaces?
\begin{itemize}[<+(1)->]
\item $\thk = 0, \thl = 0$: Extremal
\item Relax conditions: only $\thk = 0$
\item Marginal surface, stationary in the $k$ direction
\end{itemize}
\end{column}
\begin{column}{0.4 \linewidth}
\include{figures/surfaces.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Minimality}
\begin{columns}
\begin{column}{0.6 \linewidth}
\begin{itemize}[<+->]
\item $\thk = 0, \thl = 0$, Minimal Area: HRT
\item Only $\thk = 0$, Minimal Area: \textbf{minimar} (minimal area, marginal) surface
\item Small extra condition: $\nabla_k \thl \leq 0$
\item True on HRT Surfaces
\end{itemize}
\end{column}
\begin{column}{0.4 \linewidth}
\include{figures/surfaces.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Outer Entropy \& Minimar Surfaces}
For choice of $\alpha$, $Ow[\mu]$
\vspace{-1em}
\begin{columns}
\begin{column}{0.5 \linewidth}
\begin{itemize}[<+(1)->]
\item Have outer wedge, boundary
\item Maximin: $\exists \Sigma^{(\alpha)}$ with $X_B$ HRT
\item Find $\bar\mu(\Sigma^{(\alpha)})$ on $\Sigma^{(\alpha)}$
\item $X_B^{(\alpha)},\bar\mu(\Sigma^{(\alpha)}), B$ all homologous
\item[]
\vspace{-1em}
\begin{align*}
S[\rho_B] &= \frac{\Area[X_B^{(\alpha)}]}{4 G\hbar} &\text{(HRT)} \\
\onslide<7->{
&\leq \frac{\Area[\bar\mu(\Sigma^{(\alpha)})]}{4 G\hbar} &\text{(maximin)} \\
}
\onslide<8->{
&\leq \frac{\Area[\mu]}{4 G\hbar} &\text{(NCC)}
}
\end{align*}
\end{itemize}
\end{column}
\begin{column}{0.5 \linewidth}
\include{figures/4_bounding_ent.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Only inequalities are interesting?}
\begin{itemize}[<+->]
\item Know that $S[\rhoa] \leq \frac{\Area[\mu]}{4G\hbar}$
\item Since $\Sout[\mu] = \max_{\{\alpha\}} \left[ S[\rhoa] \right]$, we have
$$ \Sout[\mu] \leq \frac{\Area[\mu]}{4G\hbar} $$
\item How tight is this bound?
\item Can always find $\alpha$ that saturates:
$$ \Sout[\mu] = \frac{\Area[\mu]}{4G\hbar} $$
\end{itemize}
\end{frame}
\begin{frame}{Hitting the bound}
\begin{columns}
\begin{column}{0.4 \linewidth}
\vspace{-3em}
\begin{itemize}[<+(1)->]
\item Can glue on stationary $N_{-k}$
\item $\thk = 0, \thl \leq 0$ at $\mu$
\item Have $\nabla_k \thl \leq 0$
\item $\thl$ increasing along $-k$
\item Can find cross-section of $N_{-k}$ with $\thl = 0$
\item Gives us extremal $X_B$
\item $N_{-k}$ stationary, so $\Area[X_B] = \Area[\mu]$
\item Can $X_B$ be HRT?
\end{itemize}
\end{column}
\begin{column}{0.6 \linewidth}
\include{figures/5_making_alpha.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Hitting the bound}
\begin{columns}
\begin{column}{0.4 \linewidth}
\vspace{-3em}
\begin{itemize}[<+->]
\item Need to build $Iw[\mu]$
\item Use CPT symmetry through $X_B$
\item Wormhole-like geometry
\item Cauchy surface: $\widetilde N_{-l} \cup \widetilde N_{-k} \cup N_{-k} \cup N_{-l}$
\item IVP $\rightarrow$ Full spacetime
\end{itemize}
\end{column}
\begin{column}{0.6 \linewidth}
\include{figures/6_cpt_stuff.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Hitting the bound}
\begin{columns}
\setlength{\tabcolsep}{0pt}
\begin{column}{0.4 \linewidth}
\begin{itemize}[<+->]
\item Is it HRT?
\item Pick partial $\widetilde \Sigma_{min}, \Sigma_{min}$ where $\mu$ minimal area.
\item Try other extremal surfaces $X_1',X_2'$
\item Look at $X'_{1,2}$ on $\Sigma_{min}$ and $N_{-k}$
\item $\Area[\overline{X_1'}] = \Area[\mu]$ (stationarity)
\item $\Area[\overline{X_2'}] \geq \Area[$\mu$]$ (minimality)
\item Representatives are always smaller!
\vspace{-0.5em}
$$\Area[X'_{1,2}] \geq \Area[\overline{X_{1,2}'}] \geq \Area[\mu] = \Area[X_B]$$
\end{itemize}
\end{column}
\begin{column}{0.6 \linewidth}
\hspace{-1em}
\include{figures/7_show_hrt.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{It's an equality!}
Given any $\mu$ minimar, $Ow[\mu]$, we have
\begin{align*}
\onslide<2->{
\Sout &\leq \frac{\Area[\mu]}{4G\hbar} \\
}
\onslide<3->{
\exists \alpha \text{ with } \Sout &= \frac{\Area[\mu]}{4G\hbar} \\
}
\onslide<4->{
\text{So } \Sout &= \frac{\Area[\mu]}{4G\hbar}
}
\end{align*}
\onslide<5->{
Natural generalization of HRT with coarse graining!
}
\end{frame}
\begin{frame}{What about the boundary?}
\begin{columns}
\begin{column}{0.5 \linewidth}
\begin{itemize}[<+(1)->]
\item Fix state before $t_i$
\item Allow ``simple'' sources: bulk fields that propagate causally from boundary
\item Preserves $N_l$ and $\mu$
\item Let $\rho$ vary after $t_i$
\item Maximize $S_{vN}$ over this to get $S^{(simple)}$
\item Can show $$ S^{(simple)}[t_i] = \Sout[\sigma] $$
\end{itemize}
\end{column}
\begin{column}{0.5 \linewidth}
\include{figures/8_simple_ent.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{So... Second Law?}
Kind of...
\vspace{-1em}
\begin{columns}
\begin{column}{0.5 \linewidth}
\begin{itemize}[<+(1)->]
\item Can foliate space with minimars
\item Moving out means less data, higher entropy
\item Greater area
\item $S^{(simple)}$ increases at later times
\item Opposite case for moving in
\end{itemize}
\end{column}
\begin{column}{0.5 \linewidth}
\include{figures/9_sec_law.tex}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{What's next?}
\begin{itemize}[<+(1)->]
\item Outer entropy doesn't work for BH Horizons
\item Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)
\item Still no nice BH area second law\ldots
\item Semi-classical gravity?
\begin{itemize}
\item \textit{Quantum} marginally trapped surfaces
\item Redo coarse graining
\item Raphael, Ven, Arvin did this (arxiv:1906.05299)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\Huge Thanks!
\end{center}
\end{frame}
\end{document}