Skip to content

Latest commit

 

History

History
120 lines (83 loc) · 3.58 KB

README.md

File metadata and controls

120 lines (83 loc) · 3.58 KB

FastSpeech2

This repository is a refactored version from ming024's own. I focused on refactoring structure for fitting my cases and making parallel pre-processing codes. And I wrote installation guide with the latest version of MFA(Montreal Force Aligner).

Installation

  • Tested on python 3.8, Ubuntu 20.04

    • Notice ! For installing MFA, you should install the miniconda.
    • If you run MFA under 16.04 or ealier version of Ubuntu, you will face a compile error.
  • In your system

    • To install pyworld, run "sudo apt-get install python3.x-dev". (x is your python version).
    • To install sndfile, run "sudo apt-get install libsndfile-dev"
    • To use MFA, run "sudo apt-get install libopenblas-base"
  • Install requirements

# install pytorch_sound
pip install git+https://github.com/appleholic/pytorch_sound
pip install -e .
  • Download datasets
  1. VCTK
  2. LibriTTS
    • To be updated
  • Install MFA

    • Visit and follow a guide that described in MFA installation website.
    • Additional installation
      • mfa thirdparty download
      • mfa download acoustic english
  • Pre-trained checkpoint

Preprocess (VCTK case)

  1. Prepare MFA
python fastspeech2/scripts/prepare_align.py configs/vctk_prepare_align.json
  1. Run MFA for making alignments
# Define your the number of threads to run MFA at the last of a command. "-j [The number of threads]"
mfa align data/fastspeech2/vctk lexicons/librispeech-lexicon.txt english data/fastspeech2/vctk-pre -j 24
  1. Feature preprocessing
python fastspeech2/scripts/preprocess.py configs/vctk_preprocess.json

Train

  1. Multi-speaker fastspeech2
python fastspeech2/scripts/train.py configs/fastspeech2_vctk_tts.json
  • If you want to change the parameters of training FastSpeech2, check out the code and put the option to configuration file.
    • train code : fastspeech2/scripts/train.py
    • config : configs/fastspeech2_vctk_tts.json
  1. Fastspeech2 with reference encoder (To be updated)

Synthesize

Multi-spaker model

  • In a code
from fastspeech2.inference import Inferencer
from speech_interface.interfaces.hifi_gan import InterfaceHifiGAN

# arguments
# chk_path: str, lexicon_path: str, device: str = 'cuda'
inferencer = Inferencer(chk_path=chk_path, lexicon_path=lexicon_path, device=device)

# initialize hifigan
interface = InterfaceHifiGAN(model_name='hifi_gan_v1_universal', device='cuda')

# arguments
# text: str, speaker: int = 0, pitch_control: float = 1., energy_control: float = 1., duration_control: float = 1.
txt = 'Hello, I am a programmer.'
mel_spectrogram = inferencer.tts(txt, speaker=0)

# Reconstructs speech by using Hifi-GAN
pred_wav = interface.decode(mel_spectrogram.transpose(1, 2)).squeeze()

# If you test on a jupyter notebook
from IPython.display import Audio
Audio(pred_wav.cpu().numpy(), rate=22050)
  • In command line
python fastspeech2/scripts/synthesize.py [TEXT] [OUTPUT PATH] [CHECKPOINT PATH] [LEXICON PATH] [[DEVICE]] [[SPEAKER]]

Reference encoder (not updated)

Reference