-
Notifications
You must be signed in to change notification settings - Fork 540
/
apriltag.c
1474 lines (1173 loc) · 46.8 KB
/
apriltag.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 2013-2016, The Regents of The University of Michigan.
All rights reserved.
This software was developed in the APRIL Robotics Lab under the
direction of Edwin Olson, [email protected]. This software may be
available under alternative licensing terms; contact the address above.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the Regents of The University of Michigan.
*/
#include "apriltag.h"
#define _USE_MATH_DEFINES
#include <math.h>
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "common/image_u8.h"
#include "common/image_u8x3.h"
#include "common/zarray.h"
#include "common/matd.h"
#include "common/homography.h"
#include "common/timeprofile.h"
#include "common/math_util.h"
#include "common/g2d.h"
#include "common/debug_print.h"
#include "apriltag_math.h"
#include "common/postscript_utils.h"
#ifdef _WIN32
static inline void srandom(unsigned int seed)
{
srand(seed);
}
static inline long int random(void)
{
return rand();
}
#endif
#define APRILTAG_U64_ONE ((uint64_t) 1)
extern zarray_t *apriltag_quad_thresh(apriltag_detector_t *td, image_u8_t *im);
// Regresses a model of the form:
// intensity(x,y) = C0*x + C1*y + CC2
// The J matrix is the:
// J = [ x1 y1 1 ]
// [ x2 y2 1 ]
// [ ... ]
// The A matrix is J'J
struct graymodel
{
double A[3][3];
double B[3];
double C[3];
};
static void graymodel_init(struct graymodel *gm)
{
memset(gm, 0, sizeof(struct graymodel));
}
static void graymodel_add(struct graymodel *gm, double x, double y, double gray)
{
// update upper right entries of A = J'J
gm->A[0][0] += x*x;
gm->A[0][1] += x*y;
gm->A[0][2] += x;
gm->A[1][1] += y*y;
gm->A[1][2] += y;
gm->A[2][2] += 1;
// update B = J'gray
gm->B[0] += x * gray;
gm->B[1] += y * gray;
gm->B[2] += gray;
}
static void graymodel_solve(struct graymodel *gm)
{
mat33_sym_solve((double*) gm->A, gm->B, gm->C);
}
static double graymodel_interpolate(struct graymodel *gm, double x, double y)
{
return gm->C[0]*x + gm->C[1]*y + gm->C[2];
}
struct quick_decode_entry
{
uint64_t rcode; // the queried code
uint16_t id; // the tag ID (a small integer)
uint8_t hamming; // how many errors corrected?
uint8_t rotation; // number of rotations [0, 3]
};
struct quick_decode
{
int nentries;
struct quick_decode_entry *entries;
};
/**
* Assuming we are drawing the image one quadrant at a time, what would the rotated image look like?
* Special care is taken to handle the case where there is a middle pixel of the image.
*/
static uint64_t rotate90(uint64_t w, int numBits)
{
int p = numBits;
uint64_t l = 0;
if (numBits % 4 == 1) {
p = numBits - 1;
l = 1;
}
w = ((w >> l) << (p/4 + l)) | (w >> (3 * p/ 4 + l) << l) | (w & l);
w &= ((APRILTAG_U64_ONE << numBits) - 1);
return w;
}
static void quad_destroy(struct quad *quad)
{
if (!quad)
return;
matd_destroy(quad->H);
matd_destroy(quad->Hinv);
free(quad);
}
static struct quad *quad_copy(struct quad *quad)
{
struct quad *q = calloc(1, sizeof(struct quad));
memcpy(q, quad, sizeof(struct quad));
if (quad->H)
q->H = matd_copy(quad->H);
if (quad->Hinv)
q->Hinv = matd_copy(quad->Hinv);
return q;
}
static void quick_decode_add(struct quick_decode *qd, uint64_t code, int id, int hamming)
{
uint32_t bucket = code % qd->nentries;
while (qd->entries[bucket].rcode != UINT64_MAX) {
bucket = (bucket + 1) % qd->nentries;
}
qd->entries[bucket].rcode = code;
qd->entries[bucket].id = id;
qd->entries[bucket].hamming = hamming;
}
static void quick_decode_uninit(apriltag_family_t *fam)
{
if (!fam->impl)
return;
struct quick_decode *qd = (struct quick_decode*) fam->impl;
free(qd->entries);
free(qd);
fam->impl = NULL;
}
static void quick_decode_init(apriltag_family_t *family, int maxhamming)
{
assert(family->impl == NULL);
assert(family->ncodes < 65536);
struct quick_decode *qd = calloc(1, sizeof(struct quick_decode));
int capacity = family->ncodes;
int nbits = family->nbits;
if (maxhamming >= 1)
capacity += family->ncodes * nbits;
if (maxhamming >= 2)
capacity += family->ncodes * nbits * (nbits-1);
if (maxhamming >= 3)
capacity += family->ncodes * nbits * (nbits-1) * (nbits-2);
qd->nentries = capacity * 3;
// debug_print("capacity %d, size: %.0f kB\n",
// capacity, qd->nentries * sizeof(struct quick_decode_entry) / 1024.0);
qd->entries = calloc(qd->nentries, sizeof(struct quick_decode_entry));
if (qd->entries == NULL) {
debug_print("Failed to allocate hamming decode table\n");
// errno already set to ENOMEM (Error No MEMory) by calloc() failure
return;
}
for (int i = 0; i < qd->nentries; i++)
qd->entries[i].rcode = UINT64_MAX;
errno = 0;
for (uint32_t i = 0; i < family->ncodes; i++) {
uint64_t code = family->codes[i];
// add exact code (hamming = 0)
quick_decode_add(qd, code, i, 0);
if (maxhamming >= 1) {
// add hamming 1
for (int j = 0; j < nbits; j++)
quick_decode_add(qd, code ^ (APRILTAG_U64_ONE << j), i, 1);
}
if (maxhamming >= 2) {
// add hamming 2
for (int j = 0; j < nbits; j++)
for (int k = 0; k < j; k++)
quick_decode_add(qd, code ^ (APRILTAG_U64_ONE << j) ^ (APRILTAG_U64_ONE << k), i, 2);
}
if (maxhamming >= 3) {
// add hamming 3
for (int j = 0; j < nbits; j++)
for (int k = 0; k < j; k++)
for (int m = 0; m < k; m++)
quick_decode_add(qd, code ^ (APRILTAG_U64_ONE << j) ^ (APRILTAG_U64_ONE << k) ^ (APRILTAG_U64_ONE << m), i, 3);
}
if (maxhamming > 3) {
debug_print("\"maxhamming\" beyond 3 not supported\n");
// set errno to Error INvalid VALue
errno = EINVAL;
return;
}
}
family->impl = qd;
#if 0
int longest_run = 0;
int run = 0;
int run_sum = 0;
int run_count = 0;
// This accounting code doesn't check the last possible run that
// occurs at the wrap-around. That's pretty insignificant.
for (int i = 0; i < qd->nentries; i++) {
if (qd->entries[i].rcode == UINT64_MAX) {
if (run > 0) {
run_sum += run;
run_count ++;
}
run = 0;
} else {
run ++;
longest_run = imax(longest_run, run);
}
}
printf("quick decode: longest run: %d, average run %.3f\n", longest_run, 1.0 * run_sum / run_count);
#endif
}
// returns an entry with hamming set to 255 if no decode was found.
static void quick_decode_codeword(apriltag_family_t *tf, uint64_t rcode,
struct quick_decode_entry *entry)
{
struct quick_decode *qd = (struct quick_decode*) tf->impl;
// qd might be null if detector_add_family_bits() failed
for (int ridx = 0; qd != NULL && ridx < 4; ridx++) {
for (int bucket = rcode % qd->nentries;
qd->entries[bucket].rcode != UINT64_MAX;
bucket = (bucket + 1) % qd->nentries) {
if (qd->entries[bucket].rcode == rcode) {
*entry = qd->entries[bucket];
entry->rotation = ridx;
return;
}
}
rcode = rotate90(rcode, tf->nbits);
}
entry->rcode = 0;
entry->id = 65535;
entry->hamming = 255;
entry->rotation = 0;
}
static inline int detection_compare_function(const void *_a, const void *_b)
{
apriltag_detection_t *a = *(apriltag_detection_t**) _a;
apriltag_detection_t *b = *(apriltag_detection_t**) _b;
return a->id - b->id;
}
void apriltag_detector_remove_family(apriltag_detector_t *td, apriltag_family_t *fam)
{
quick_decode_uninit(fam);
zarray_remove_value(td->tag_families, &fam, 0);
}
void apriltag_detector_add_family_bits(apriltag_detector_t *td, apriltag_family_t *fam, int bits_corrected)
{
zarray_add(td->tag_families, &fam);
if (!fam->impl)
quick_decode_init(fam, bits_corrected);
}
void apriltag_detector_clear_families(apriltag_detector_t *td)
{
for (int i = 0; i < zarray_size(td->tag_families); i++) {
apriltag_family_t *fam;
zarray_get(td->tag_families, i, &fam);
quick_decode_uninit(fam);
}
zarray_clear(td->tag_families);
}
apriltag_detector_t *apriltag_detector_create()
{
apriltag_detector_t *td = (apriltag_detector_t*) calloc(1, sizeof(apriltag_detector_t));
td->nthreads = 1;
td->quad_decimate = 2.0;
td->quad_sigma = 0.0;
td->qtp.max_nmaxima = 10;
td->qtp.min_cluster_pixels = 5;
td->qtp.max_line_fit_mse = 10.0;
td->qtp.cos_critical_rad = cos(10 * M_PI / 180);
td->qtp.deglitch = false;
td->qtp.min_white_black_diff = 5;
td->tag_families = zarray_create(sizeof(apriltag_family_t*));
pthread_mutex_init(&td->mutex, NULL);
td->tp = timeprofile_create();
td->refine_edges = true;
td->decode_sharpening = 0.25;
td->debug = false;
// NB: defer initialization of td->wp so that the user can
// override td->nthreads.
return td;
}
void apriltag_detector_destroy(apriltag_detector_t *td)
{
timeprofile_destroy(td->tp);
workerpool_destroy(td->wp);
apriltag_detector_clear_families(td);
zarray_destroy(td->tag_families);
free(td);
}
struct quad_decode_task
{
int i0, i1;
zarray_t *quads;
apriltag_detector_t *td;
image_u8_t *im;
zarray_t *detections;
image_u8_t *im_samples;
};
struct evaluate_quad_ret
{
int64_t rcode;
double score;
matd_t *H, *Hinv;
int decode_status;
struct quick_decode_entry e;
};
static matd_t* homography_compute2(double c[4][4]) {
double A[] = {
c[0][0], c[0][1], 1, 0, 0, 0, -c[0][0]*c[0][2], -c[0][1]*c[0][2], c[0][2],
0, 0, 0, c[0][0], c[0][1], 1, -c[0][0]*c[0][3], -c[0][1]*c[0][3], c[0][3],
c[1][0], c[1][1], 1, 0, 0, 0, -c[1][0]*c[1][2], -c[1][1]*c[1][2], c[1][2],
0, 0, 0, c[1][0], c[1][1], 1, -c[1][0]*c[1][3], -c[1][1]*c[1][3], c[1][3],
c[2][0], c[2][1], 1, 0, 0, 0, -c[2][0]*c[2][2], -c[2][1]*c[2][2], c[2][2],
0, 0, 0, c[2][0], c[2][1], 1, -c[2][0]*c[2][3], -c[2][1]*c[2][3], c[2][3],
c[3][0], c[3][1], 1, 0, 0, 0, -c[3][0]*c[3][2], -c[3][1]*c[3][2], c[3][2],
0, 0, 0, c[3][0], c[3][1], 1, -c[3][0]*c[3][3], -c[3][1]*c[3][3], c[3][3],
};
double epsilon = 1e-10;
// Eliminate.
for (int col = 0; col < 8; col++) {
// Find best row to swap with.
double max_val = 0;
int max_val_idx = -1;
for (int row = col; row < 8; row++) {
double val = fabs(A[row*9 + col]);
if (val > max_val) {
max_val = val;
max_val_idx = row;
}
}
if (max_val_idx < 0) {
return NULL;
}
if (max_val < epsilon) {
debug_print("WRN: Matrix is singular.\n");
return NULL;
}
// Swap to get best row.
if (max_val_idx != col) {
for (int i = col; i < 9; i++) {
double tmp = A[col*9 + i];
A[col*9 + i] = A[max_val_idx*9 + i];
A[max_val_idx*9 + i] = tmp;
}
}
// Do eliminate.
for (int i = col + 1; i < 8; i++) {
double f = A[i*9 + col]/A[col*9 + col];
A[i*9 + col] = 0;
for (int j = col + 1; j < 9; j++) {
A[i*9 + j] -= f*A[col*9 + j];
}
}
}
// Back solve.
for (int col = 7; col >=0; col--) {
double sum = 0;
for (int i = col + 1; i < 8; i++) {
sum += A[col*9 + i]*A[i*9 + 8];
}
A[col*9 + 8] = (A[col*9 + 8] - sum)/A[col*9 + col];
}
return matd_create_data(3, 3, (double[]) { A[8], A[17], A[26], A[35], A[44], A[53], A[62], A[71], 1 });
}
// returns non-zero if an error occurs (i.e., H has no inverse)
static int quad_update_homographies(struct quad *quad)
{
//zarray_t *correspondences = zarray_create(sizeof(float[4]));
double corr_arr[4][4];
for (int i = 0; i < 4; i++) {
corr_arr[i][0] = (i==0 || i==3) ? -1 : 1;
corr_arr[i][1] = (i==0 || i==1) ? -1 : 1;
corr_arr[i][2] = quad->p[i][0];
corr_arr[i][3] = quad->p[i][1];
}
if (quad->H)
matd_destroy(quad->H);
if (quad->Hinv)
matd_destroy(quad->Hinv);
// XXX Tunable
quad->H = homography_compute2(corr_arr);
if (quad->H != NULL) {
quad->Hinv = matd_inverse(quad->H);
if (quad->Hinv != NULL) {
// Success!
return 0;
}
matd_destroy(quad->H);
quad->H = NULL;
}
return -1;
}
static double value_for_pixel(image_u8_t *im, double px, double py) {
int x1 = floor(px - 0.5);
int x2 = ceil(px - 0.5);
double x = px - 0.5 - x1;
int y1 = floor(py - 0.5);
int y2 = ceil(py - 0.5);
double y = py - 0.5 - y1;
if (x1 < 0 || x2 >= im->width || y1 < 0 || y2 >= im->height) {
return -1;
}
return im->buf[y1*im->stride + x1]*(1-x)*(1-y) +
im->buf[y1*im->stride + x2]*x*(1-y) +
im->buf[y2*im->stride + x1]*(1-x)*y +
im->buf[y2*im->stride + x2]*x*y;
}
static void sharpen(apriltag_detector_t* td, double* values, int size) {
double *sharpened = malloc(sizeof(double)*size*size);
double kernel[9] = {
0, -1, 0,
-1, 4, -1,
0, -1, 0
};
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
sharpened[y*size + x] = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if ((y + i - 1) < 0 || (y + i - 1) > size - 1 || (x + j - 1) < 0 || (x + j - 1) > size - 1) {
continue;
}
sharpened[y*size + x] += values[(y + i - 1)*size + (x + j - 1)]*kernel[i*3 + j];
}
}
}
}
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
values[y*size + x] = values[y*size + x] + td->decode_sharpening*sharpened[y*size + x];
}
}
free(sharpened);
}
// returns the decision margin. Return < 0 if the detection should be rejected.
static float quad_decode(apriltag_detector_t* td, apriltag_family_t *family, image_u8_t *im, struct quad *quad, struct quick_decode_entry *entry, image_u8_t *im_samples)
{
// decode the tag binary contents by sampling the pixel
// closest to the center of each bit cell.
// We will compute a threshold by sampling known white/black cells around this tag.
// This sampling is achieved by considering a set of samples along lines.
//
// coordinates are given in bit coordinates. ([0, fam->border_width]).
//
// { initial x, initial y, delta x, delta y, WHITE=1 }
float patterns[] = {
// left white column
-0.5, 0.5,
0, 1,
1,
// left black column
0.5, 0.5,
0, 1,
0,
// right white column
family->width_at_border + 0.5, .5,
0, 1,
1,
// right black column
family->width_at_border - 0.5, .5,
0, 1,
0,
// top white row
0.5, -0.5,
1, 0,
1,
// top black row
0.5, 0.5,
1, 0,
0,
// bottom white row
0.5, family->width_at_border + 0.5,
1, 0,
1,
// bottom black row
0.5, family->width_at_border - 0.5,
1, 0,
0
// XXX double-counts the corners.
};
struct graymodel whitemodel, blackmodel;
graymodel_init(&whitemodel);
graymodel_init(&blackmodel);
for (long unsigned int pattern_idx = 0; pattern_idx < sizeof(patterns)/(5*sizeof(float)); pattern_idx ++) {
float *pattern = &patterns[pattern_idx * 5];
int is_white = pattern[4];
for (int i = 0; i < family->width_at_border; i++) {
double tagx01 = (pattern[0] + i*pattern[2]) / (family->width_at_border);
double tagy01 = (pattern[1] + i*pattern[3]) / (family->width_at_border);
double tagx = 2*(tagx01-0.5);
double tagy = 2*(tagy01-0.5);
double px, py;
homography_project(quad->H, tagx, tagy, &px, &py);
// don't round
int ix = px;
int iy = py;
if (ix < 0 || iy < 0 || ix >= im->width || iy >= im->height)
continue;
int v = im->buf[iy*im->stride + ix];
if (im_samples) {
im_samples->buf[iy*im_samples->stride + ix] = (1-is_white)*255;
}
if (is_white)
graymodel_add(&whitemodel, tagx, tagy, v);
else
graymodel_add(&blackmodel, tagx, tagy, v);
}
}
if (family->width_at_border > 1) {
graymodel_solve(&whitemodel);
graymodel_solve(&blackmodel);
} else {
graymodel_solve(&whitemodel);
blackmodel.C[0] = 0;
blackmodel.C[1] = 0;
blackmodel.C[2] = blackmodel.B[2]/4;
}
// XXX Tunable
if ((graymodel_interpolate(&whitemodel, 0, 0) - graymodel_interpolate(&blackmodel, 0, 0) < 0) != family->reversed_border) {
return -1;
}
// compute the average decision margin (how far was each bit from
// the decision boundary?
//
// we score this separately for white and black pixels and return
// the minimum average threshold for black/white pixels. This is
// to penalize thresholds that are too close to an extreme.
float black_score = 0, white_score = 0;
float black_score_count = 1, white_score_count = 1;
double *values = calloc(family->total_width*family->total_width, sizeof(double));
int min_coord = (family->width_at_border - family->total_width)/2;
for (uint32_t i = 0; i < family->nbits; i++) {
int bity = family->bit_y[i];
int bitx = family->bit_x[i];
double tagx01 = (bitx + 0.5) / (family->width_at_border);
double tagy01 = (bity + 0.5) / (family->width_at_border);
// scale to [-1, 1]
double tagx = 2*(tagx01-0.5);
double tagy = 2*(tagy01-0.5);
double px, py;
homography_project(quad->H, tagx, tagy, &px, &py);
double v = value_for_pixel(im, px, py);
if (v == -1) {
continue;
}
double thresh = (graymodel_interpolate(&blackmodel, tagx, tagy) + graymodel_interpolate(&whitemodel, tagx, tagy)) / 2.0;
values[family->total_width*(bity - min_coord) + bitx - min_coord] = v - thresh;
if (im_samples) {
int ix = px;
int iy = py;
im_samples->buf[iy*im_samples->stride + ix] = (v < thresh) * 255;
}
}
sharpen(td, values, family->total_width);
uint64_t rcode = 0;
for (uint32_t i = 0; i < family->nbits; i++) {
int bity = family->bit_y[i];
int bitx = family->bit_x[i];
rcode = (rcode << 1);
double v = values[(bity - min_coord)*family->total_width + bitx - min_coord];
if (v > 0) {
white_score += v;
white_score_count++;
rcode |= 1;
} else {
black_score -= v;
black_score_count++;
}
}
quick_decode_codeword(family, rcode, entry);
free(values);
return fmin(white_score / white_score_count, black_score / black_score_count);
}
static void refine_edges(apriltag_detector_t *td, image_u8_t *im_orig, struct quad *quad)
{
double lines[4][4]; // for each line, [Ex Ey nx ny]
for (int edge = 0; edge < 4; edge++) {
int a = edge, b = (edge + 1) & 3; // indices of the end points.
// compute the normal to the current line estimate
double nx = quad->p[b][1] - quad->p[a][1];
double ny = -quad->p[b][0] + quad->p[a][0];
double mag = sqrt(nx*nx + ny*ny);
nx /= mag;
ny /= mag;
if (quad->reversed_border) {
nx = -nx;
ny = -ny;
}
// we will now fit a NEW line by sampling points near
// our original line that have large gradients. On really big tags,
// we're willing to sample more to get an even better estimate.
int nsamples = imax(16, mag / 8); // XXX tunable
// stats for fitting a line...
double Mx = 0, My = 0, Mxx = 0, Mxy = 0, Myy = 0, N = 0;
for (int s = 0; s < nsamples; s++) {
// compute a point along the line... Note, we're avoiding
// sampling *right* at the corners, since those points are
// the least reliable.
double alpha = (1.0 + s) / (nsamples + 1);
double x0 = alpha*quad->p[a][0] + (1-alpha)*quad->p[b][0];
double y0 = alpha*quad->p[a][1] + (1-alpha)*quad->p[b][1];
// search along the normal to this line, looking at the
// gradients along the way. We're looking for a strong
// response.
double Mn = 0;
double Mcount = 0;
// XXX tunable: how far to search? We want to search far
// enough that we find the best edge, but not so far that
// we hit other edges that aren't part of the tag. We
// shouldn't ever have to search more than quad_decimate,
// since otherwise we would (ideally) have started our
// search on another pixel in the first place. Likewise,
// for very small tags, we don't want the range to be too
// big.
int range = td->quad_decimate + 1;
// To reduce the overhead of bilinear interpolation, we can
// reduce the number of steps per unit.
int steps_per_unit = 4;
double step_length = 1.0 / steps_per_unit;
int max_steps = 2 * steps_per_unit * range + 1;
double delta = 0.5;
// XXX tunable step size.
for (int step = 0; step < max_steps; ++step) {
double n = -range + step_length * step;
// Because of the guaranteed winding order of the
// points in the quad, we will start inside the white
// portion of the quad and work our way outward.
//
// sample to points (x1,y1) and (x2,y2) XXX tunable:
// how far +/- to look? Small values compute the
// gradient more precisely, but are more sensitive to
// noise.
double grange = 1;
double x1 = x0 + (n + grange)*nx - delta;
double y1 = y0 + (n + grange)*ny - delta;
double x1i_d, y1i_d, a1, b1;
a1 = modf(x1, &x1i_d);
b1 = modf(y1, &y1i_d);
int x1i = x1i_d, y1i = y1i_d;
if (x1i < 0 || x1i + 1 >= im_orig->width || y1i < 0 || y1i + 1 >= im_orig->height)
continue;
double x2 = x0 + (n - grange)*nx - delta;
double y2 = y0 + (n - grange)*ny - delta;
double x2i_d, y2i_d, a2, b2;
a2 = modf(x2, &x2i_d);
b2 = modf(y2, &y2i_d);
int x2i = x2i_d, y2i = y2i_d;
if (x2i < 0 || x2i + 1 >= im_orig->width || y2i < 0 || y2i + 1 >= im_orig->height)
continue;
// interpolate
double g1 = (1 - a1) * (1 - b1) * im_orig->buf[y1i*im_orig->stride + x1i] +
a1 * (1 - b1) * im_orig->buf[y1i*im_orig->stride + x1i + 1] +
(1 - a1) * b1 * im_orig->buf[(y1i + 1)*im_orig->stride + x1i] +
a1 * b1 * im_orig->buf[(y1i + 1)*im_orig->stride + x1i + 1];
double g2 = (1 - a2) * (1 - b2) * im_orig->buf[y2i*im_orig->stride + x2i] +
a2 * (1 - b2) * im_orig->buf[y2i*im_orig->stride + x2i + 1] +
(1 - a2) * b2 * im_orig->buf[(y2i + 1)*im_orig->stride + x2i] +
a2 * b2 * im_orig->buf[(y2i + 1)*im_orig->stride + x2i + 1];
if (g1 < g2) // reject points whose gradient is "backwards". They can only hurt us.
continue;
double weight = (g2 - g1)*(g2 - g1); // XXX tunable. What shape for weight=f(g2-g1)?
// compute weighted average of the gradient at this point.
Mn += weight*n;
Mcount += weight;
}
// what was the average point along the line?
if (Mcount == 0)
continue;
double n0 = Mn / Mcount;
// where is the point along the line?
double bestx = x0 + n0*nx;
double besty = y0 + n0*ny;
// update our line fit statistics
Mx += bestx;
My += besty;
Mxx += bestx*bestx;
Mxy += bestx*besty;
Myy += besty*besty;
N++;
}
// fit a line
double Ex = Mx / N, Ey = My / N;
double Cxx = Mxx / N - Ex*Ex;
double Cxy = Mxy / N - Ex*Ey;
double Cyy = Myy / N - Ey*Ey;
// TODO: Can replace this with same code as in fit_line.
double normal_theta = .5 * atan2f(-2*Cxy, (Cyy - Cxx));
nx = cosf(normal_theta);
ny = sinf(normal_theta);
lines[edge][0] = Ex;
lines[edge][1] = Ey;
lines[edge][2] = nx;
lines[edge][3] = ny;
}
// now refit the corners of the quad
for (int i = 0; i < 4; i++) {
// solve for the intersection of lines (i) and (i+1)&3.
double A00 = lines[i][3], A01 = -lines[(i+1)&3][3];
double A10 = -lines[i][2], A11 = lines[(i+1)&3][2];
double B0 = -lines[i][0] + lines[(i+1)&3][0];
double B1 = -lines[i][1] + lines[(i+1)&3][1];
double det = A00 * A11 - A10 * A01;
// inverse.
if (fabs(det) > 0.001) {
// solve
double W00 = A11 / det, W01 = -A01 / det;
double L0 = W00*B0 + W01*B1;
// Compute intersection. Note that line i represents the line from corner i to (i+1)&3, so
// the intersection of line i with line (i+1)&3 represents corner (i+1)&3.
quad->p[(i+1)&3][0] = lines[i][0] + L0*A00;
quad->p[(i+1)&3][1] = lines[i][1] + L0*A10;
} else {
// this is a bad sign. We'll just keep the corner we had.
// debug_print("bad det: %15f %15f %15f %15f %15f\n", A00, A11, A10, A01, det);
}
}
}
static void quad_decode_task(void *_u)
{
struct quad_decode_task *task = (struct quad_decode_task*) _u;
apriltag_detector_t *td = task->td;
image_u8_t *im = task->im;
for (int quadidx = task->i0; quadidx < task->i1; quadidx++) {
struct quad *quad_original;
zarray_get_volatile(task->quads, quadidx, &quad_original);
// refine edges is not dependent upon the tag family, thus
// apply this optimization BEFORE the other work.
//if (td->quad_decimate > 1 && td->refine_edges) {
if (td->refine_edges) {
refine_edges(td, im, quad_original);
}
// make sure the homographies are computed...
if (quad_update_homographies(quad_original) != 0)
continue;
for (int famidx = 0; famidx < zarray_size(td->tag_families); famidx++) {
apriltag_family_t *family;
zarray_get(td->tag_families, famidx, &family);
if (family->reversed_border != quad_original->reversed_border) {
continue;
}
// since the geometry of tag families can vary, start any
// optimization process over with the original quad.
struct quad *quad = quad_copy(quad_original);
struct quick_decode_entry entry;
float decision_margin = quad_decode(td, family, im, quad, &entry, task->im_samples);
if (decision_margin >= 0 && entry.hamming < 255) {
apriltag_detection_t *det = calloc(1, sizeof(apriltag_detection_t));
det->family = family;
det->id = entry.id;
det->hamming = entry.hamming;
det->decision_margin = decision_margin;
double theta = entry.rotation * M_PI / 2.0;
double c = cos(theta), s = sin(theta);
// Fix the rotation of our homography to properly orient the tag
matd_t *R = matd_create(3,3);
MATD_EL(R, 0, 0) = c;
MATD_EL(R, 0, 1) = -s;
MATD_EL(R, 1, 0) = s;
MATD_EL(R, 1, 1) = c;
MATD_EL(R, 2, 2) = 1;
det->H = matd_op("M*M", quad->H, R);
matd_destroy(R);
homography_project(det->H, 0, 0, &det->c[0], &det->c[1]);
// [-1, -1], [1, -1], [1, 1], [-1, 1], Desired points
// [-1, 1], [1, 1], [1, -1], [-1, -1], FLIP Y
// adjust the points in det->p so that they correspond to
// counter-clockwise around the quad, starting at -1,-1.
for (int i = 0; i < 4; i++) {
int tcx = (i == 1 || i == 2) ? 1 : -1;
int tcy = (i < 2) ? 1 : -1;
double p[2];
homography_project(det->H, tcx, tcy, &p[0], &p[1]);
det->p[i][0] = p[0];
det->p[i][1] = p[1];
}
pthread_mutex_lock(&td->mutex);
zarray_add(task->detections, &det);
pthread_mutex_unlock(&td->mutex);
}