-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstyle_transfer.py
167 lines (130 loc) · 5.38 KB
/
style_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import tensorflow as tf
import IPython.display as display
import matplotlib.pyplot as plt
import matplotlib as mpl
import argparse
import time
mpl.rcParams['figure.figsize'] = (12, 12)
mpl.rcParams['axes.grid'] = False
tf.compat.v1.enable_eager_execution()
parser = argparse.ArgumentParser()
parser.add_argument('--content', help='content_image path')
parser.add_argument('--style', help='style_image path')
args = parser.parse_args()
content_path = args.content
style_path = args.style
def load_image(img_path):
max_dim = 512
img = tf.io.read_file(img_path)
img = tf.image.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
shape = tf.cast(tf.shape(img)[:-1], tf.float32)
long_dim = max(shape)
print(long_dim)
scale = max_dim / long_dim
new_shape = tf.cast(shape * scale, tf.int32)
img = tf.image.resize(img, new_shape)
img = img[tf.newaxis, :]
return img
def show_image(img, title=None):
if len(img.shape) > 3:
img = tf.squeeze(img, axis=0)
plt.imshow(img)
if title:
plt.title = title
plt.show()
content_image = load_image(content_path)
style_image = load_image(style_path)
show_image(content_image, 'Content_Image')
show_image(style_image, 'Style_Image')
plt.show()
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
for layer in vgg.layers:
print(layer.name)
content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
def vgg_layers(layers_name):
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layers_name]
model = tf.keras.Model([vgg.input], outputs)
return model
def gram_matrix(style_tensor):
output = tf.linalg.einsum('bijc,bijd->bcd', style_tensor, style_tensor)
dimension = tf.shape(output)
num_of_locations = tf.cast(dimension[1] * dimension[2], tf.float32)
return output / num_of_locations
class StyleContentModel(tf.keras.models.Model):
def __init__(self, style_layers, content_layers):
super(StyleContentModel, self).__init__()
self.vgg = vgg_layers(style_layers + content_layers)
self.style_layers = style_layers
self.content_layers = content_layers
self.num_style_layers = len(style_layers)
self.vgg.trainable = False
def call(self, inputs, training=None, mask=None):
inputs = inputs * 255.0
preprocessed_input = tf.keras.applications.vgg19.preprocess_input(inputs)
outputs = self.vgg(preprocessed_input)
style_outputs, content_outputs = (outputs[:self.num_style_layers],
outputs[self.num_style_layers:])
style_outputs = [gram_matrix(style_output) for style_output in style_outputs]
content_dict = {content_name: value for content_name, value in zip(self.content_layers, content_outputs)}
style_dict = {style_name: value for style_name, value in zip(self.style_layers, style_outputs)}
return {'content': content_dict, 'style': style_dict}
extractor = StyleContentModel(style_layers, content_layers)
results = extractor(tf.constant(content_image))
style_targets = extractor(style_image)['style']
content_targets = extractor(content_image)['content']
image_result = tf.Variable(content_image)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=0.02, beta1=0.99, epsilon=1e-1)
style_weight = 1e-1
content_weight = 1e4
def style_content_loss(extracted_output):
style_outputs = extracted_output['style']
content_outputs = extracted_output['content']
style_loss = tf.add_n(
[tf.reduce_mean((style_outputs[name] - style_targets[name]) ** 2) for name in style_outputs.keys()])
content_loss = tf.add_n(
[tf.reduce_mean((content_outputs[name] - content_targets[name]) ** 2) for name in content_outputs.keys()])
style_loss *= style_weight / num_style_layers
content_loss *= content_weight / num_content_layers
total_loss = style_loss + content_loss
return total_loss
def clip_image(image):
return tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
def total_variation_loss(image):
x_deltas = image[:, :, 1:, :] - image[:, :, :-1, :]
y_deltas = image[:, 1:, :, :] - image[:, :-1, :, :]
var_loss = tf.reduce_mean(x_deltas ** 2) + tf.reduce_mean(y_deltas ** 2)
return var_loss
total_variation_weight = 1e6
@tf.function()
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
loss += total_variation_weight * total_variation_loss(image)
gradient = tape.gradient(loss, image)
optimizer.apply_gradients([(gradient, image)])
image.assign(clip_image(image))
print("Commencing Style Transfer...\n")
startTime = time.time()
num_of_epochs = 10
steps_per_epoch = 10
for num in range(num_of_epochs):
print("Epoch %d in progress..." % (num + 1))
for s in range(steps_per_epoch):
train_step(image_result)
if num == num_of_epochs - 1:
display.clear_output(wait=True)
plt.imshow(image_result.read_value()[0])
plt.show()
endTime = time.time()
print("Total Time: {:.1f}".format(endTime - startTime))