From e93616cab713716c17defb2228fd0937e841f6ac Mon Sep 17 00:00:00 2001
From: wangshuai09 <391746016@qq.com>
Date: Tue, 16 Jul 2024 20:49:15 +0800
Subject: [PATCH] add accelerate (#36)
add accelerate
---
index.rst | 11 ++---
sources/accelerate/index.rst | 8 ++++
sources/accelerate/install.rst | 28 ++++++++++++
sources/accelerate/quick_start.rst | 69 ++++++++++++++++++++++++++++++
4 files changed, 111 insertions(+), 5 deletions(-)
create mode 100644 sources/accelerate/index.rst
create mode 100644 sources/accelerate/install.rst
create mode 100644 sources/accelerate/quick_start.rst
diff --git a/index.rst b/index.rst
index f3bdd87..2b76359 100644
--- a/index.rst
+++ b/index.rst
@@ -20,6 +20,7 @@
sources/pytorch/index.rst
sources/llamafactory/index.rst
+ sources/accelerate/index.rst
sources/transformers/index.rst
.. warning::
@@ -136,7 +137,7 @@
-
官方链接
+
官方链接
|
安装指南
|
@@ -186,16 +187,16 @@
Accelerate
-
图像和音频生成等扩散模型工具链
+
适用于Pytorch的多GPUs训练工具链
diff --git a/sources/accelerate/index.rst b/sources/accelerate/index.rst
new file mode 100644
index 0000000..a7d82a9
--- /dev/null
+++ b/sources/accelerate/index.rst
@@ -0,0 +1,8 @@
+Accelerate
+==============
+
+.. toctree::
+ :maxdepth: 2
+
+ install.rst
+ quick_start.rst
\ No newline at end of file
diff --git a/sources/accelerate/install.rst b/sources/accelerate/install.rst
new file mode 100644
index 0000000..4c35f45
--- /dev/null
+++ b/sources/accelerate/install.rst
@@ -0,0 +1,28 @@
+安装指南
+==============
+
+本教程面向使用 Accelerate & 昇腾的开发者,帮助完成昇腾环境下 Accelerate 的安装。
+
+Accelerate 下载安装
+--------------------
+
+.. note::
+
+ 阅读本篇前,请确保已按照 :doc:`安装教程 <./install>` 准备好昇腾环境!
+ 或者直接使用具备昇腾环境的镜像 `cosdt/cann:8.0.rc1-910b-ubuntu22.04 `_,
+ 更多的版本可至 `cosdt/cann `_ 获取。
+
+启动镜像
+:::::::::::::::::
+
+.. code-block:: shell
+
+ docker run -itd --network host -v /usr/local/dcmi:/usr/local/dcmi -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi -v /usr/local/Ascend/driver:/usr/local/Ascend/driver -v /etc/ascend_install.info:/etc/ascend_install.info --device /dev/davinci7 --device /dev/davinci_manager --device /dev/devmm_svm --device /dev/hisi_hdc --shm-size 16G --name accelerate cosdt/cann:8.0.rc1-910b-ubuntu22.04 bash
+
+安装 Accelerate 及依赖包
+::::::::::::::::::::::::::
+
+.. code-block:: shell
+
+ pip install torch==2.2.0 torch_npu==2.2.0 accelerate -i https://pypi.tuna.tsinghua.edu.cn/simple
+
diff --git a/sources/accelerate/quick_start.rst b/sources/accelerate/quick_start.rst
new file mode 100644
index 0000000..8ec41c0
--- /dev/null
+++ b/sources/accelerate/quick_start.rst
@@ -0,0 +1,69 @@
+快速开始
+============
+
+.. note::
+ 阅读本篇前,请确保已按照 :doc:`安装指南 <./install>` 准备好昇腾环境及 Accelerate !
+
+本教程以一个简单的 NLP 模型为例,讲述如何使用 Accelerate 在昇腾 NPU 上进行模型的训练。
+
+前置准备
+------------
+
+本篇将使用到 HuggingFace 其他工具链及 scikit-learn 库,请使用以下指令安装:
+
+.. code-block::
+
+ pip install datasets evaluate transformers scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple
+
+本篇样例代码为 Accelrate 官方样例,需提前进行下载
+
+.. code-block::
+
+ git clone https://github.com/huggingface/accelerate.git
+
+模型训练
+------------
+
+.. code-block::
+ :linenos:
+
+ # 替换HF域名,方便国内用户进行数据及模型的下载
+ export HF_ENDPOINT=https://hf-mirror.com
+ # 进入项目目录
+ cd accelerate/examples
+ # 模型训练
+ python nlp_example.py
+
+出现如下日志代表训练成功:
+
+::
+
+ Downloading builder script: 5.75kB [00:01, 3.69kB/s]
+ tokenizer_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████| 49.0/49.0 [00:00<00:00, 237kB/s]
+ config.json: 570B [00:00, 2.23MB/s]
+ vocab.txt: 79.5kB [00:12, 3.45kB/s]Error while downloading from https://hf-mirror.com/bert-base-cased/resolve/main/vocab.txt: HTTPSConnectionPool(host='hf-mirror.com', port=443): Read timed out.
+ Trying to resume download...
+ vocab.txt: 213kB [00:07, 15.5kB/s]]
+ vocab.txt: 91.4kB [00:32, 2.81kB/s]
+ tokenizer.json: 436kB [00:19, 22.8kB/s]
+ Downloading readme: 35.3kB [00:01, 26.4kB/s]
+ Downloading data: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 649k/649k [00:02<00:00, 288kB/s]
+ Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 75.7k/75.7k [00:00<00:00, 77.8kB/s]
+ Downloading data: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 308k/308k [00:01<00:00, 204kB/s]
+ Generating train split: 100%|███████████████████████████████████████████████████████████████████████████| 3668/3668 [00:00<00:00, 27701.23 examples/s]
+ Generating validation split: 100%|████████████████████████████████████████████████████████████████████████| 408/408 [00:00<00:00, 73426.42 examples/s]
+ Generating test split: 100%|███████████████████████████████████████████████████████████████████████████| 1725/1725 [00:00<00:00, 246370.91 examples/s]
+ Map: 100%|███████████████████████████████████████████████████████████████████████████████████████████████| 3668/3668 [00:01<00:00, 3378.05 examples/s]
+ Map: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 408/408 [00:00<00:00, 3553.72 examples/s]
+ Map: 100%|███████████████████████████████████████████████████████████████████████████████████████████████| 1725/1725 [00:00<00:00, 5109.03 examples/s]
+ model.safetensors: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 436M/436M [02:42<00:00, 2.68MB/s]
+ Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight']
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+ huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
+ To disable this warning, you can either:
+ - Avoid using `tokenizers` before the fork if possible
+ - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
+ You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
+ epoch 0: {'accuracy': 0.8014705882352942, 'f1': 0.8439306358381503}
+ epoch 1: {'accuracy': 0.8578431372549019, 'f1': 0.8975265017667845}
+ epoch 2: {'accuracy': 0.8700980392156863, 'f1': 0.9087779690189329}