forked from therault/ttg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wavefront-df.impl.h
341 lines (293 loc) · 12.7 KB
/
wavefront-df.impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#include <algorithm> // for std::max
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <iomanip>
#include <iostream>
#include <random>
#include <thread>
#include "blockmatrix.h"
/*!
\file wavefront_df.impl.h
\brief Wavefront computation on distributed memory
\defgroup
ingroup examples
\par Points of interest
- dynamic recursive DAG.
*/
using Key = std::pair<int, int>;
// An empty class used for pure control flows
struct Control {};
template <typename T>
inline BlockMatrix<T> stencil_computation(int i, int j, int M, int N, BlockMatrix<T> bm, BlockMatrix<T> left,
BlockMatrix<T> top, BlockMatrix<T> right, BlockMatrix<T> bottom) {
// i==0 -> no top block
// j==0 -> no left block
// i==M-1 -> no bottom block
// j==N-1 -> no right block
int MB = bm.rows();
int NB = bm.cols();
BlockMatrix<T> current = bm;
for (int ii = 0; ii < MB; ++ii) {
for (int jj = 0; jj < NB; ++jj) {
current(ii,jj) = (current(ii,jj) + ((ii == 0) ? (i > 0 ? top(MB - 1, jj) : 0.0) : current(ii - 1, jj)));
current(ii,jj) = (current(ii,jj) + ((ii == MB - 1) ? (i < M - 1 ? bottom(0, jj) : 0.0) : current(ii + 1, jj)));
current(ii,jj) = (current(ii,jj) + ((jj == 0) ? (j > 0 ? left(ii, NB - 1) : 0.0) : current(ii, jj - 1)));
current(ii,jj) = (current(ii,jj) + ((jj == NB - 1) ? (j < N - 1 ? right(ii, 0) : 0.0) : current(ii, jj + 1)));
current(ii,jj) = current(ii,jj) * 0.25;
}
}
return current;
}
// serial implementation of wavefront computation.
template <typename T>
void wavefront_serial(Matrix<T>* m, Matrix<T>* result, int n_brows, int n_bcols) {
for (int i = 0; i < n_brows; i++) {
for (int j = 0; j < n_bcols; j++) {
BlockMatrix<T> left, top, right, bottom;
if (i < n_brows - 1) bottom = ((*m)(i + 1, j));
if (j < n_bcols - 1) right = ((*m)(i, j + 1));
if (j > 0) left = ((*m)(i, j - 1));
if (i > 0) top = ((*m)(i - 1, j));
(*result)(i,j) = stencil_computation(i, j, n_brows, n_bcols, ((*m)(i,j)), (left), (top), (right), (bottom));
}
}
}
#include TTG_RUNTIME_H
IMPORT_TTG_RUNTIME_NS
// Method to generate wavefront tasks with two inputs.
template <typename funcT, typename T>
auto make_wavefront2(const funcT& func, int MB, int NB, Edge<Key, BlockMatrix<T>>& input,
Edge<Key, BlockMatrix<T>>& left, Edge<Key, BlockMatrix<T>>& top,
Edge<Key, std::vector<BlockMatrix<T>>>& bottom_right,
Edge<Key, BlockMatrix<T>>& result) {
auto f = [MB, NB, func](const Key& key, BlockMatrix<T>&& input, BlockMatrix<T>&& left, BlockMatrix<T>&& top,
std::vector<BlockMatrix<T>>&& bottom_right,
std::tuple<Out<Key, BlockMatrix<T>>, Out<Key, BlockMatrix<T>>,
Out<Key, BlockMatrix<T>>>& out) {
auto [i, j] = key;
int next_i = i + 1;
int next_j = j + 1;
int size = bottom_right.size();
//std::cout << "wf2 " << i << " " << j << " " << "size: " << bottom_right.size() << std::endl;
BlockMatrix<T> res;
if (i == MB - 1 && j == NB - 1)
res = func(i, j, MB, NB, input, left, top, input, input);
else {
if (size == 1)
res = func(i, j, MB, NB, input, left, top, bottom_right[0], bottom_right[0]);
else
res = func(i, j, MB, NB, input, left, top, bottom_right[0], bottom_right[1]);
}
//Processing finished for this block, so send it to output TT
send<2>(Key(i,j), res, out);
if (next_i < MB) {
send<1>(Key(next_i, j), res, out);
}
if (next_j < NB) {
send<0>(Key(i, next_j), res, out);
}
};
return wrap(f, edges(input, left, top, bottom_right), edges(left, top, result), "wavefront2", {"input", "left", "top", "bottom-right"}, {"left", "top", "result"});
}
template <typename T>
auto initiator(Matrix<T>* m, Edge<Key, BlockMatrix<T>>& out0, Edge<Key, BlockMatrix<T>>& out1,
Edge<Key, BlockMatrix<T>>& out2, Edge<Key, std::vector<BlockMatrix<T>>>& bottom_right0,
Edge<Key, std::vector<BlockMatrix<T>>>& bottom_right1,
Edge<Key, std::vector<BlockMatrix<T>>>& bottom_right2) {
auto f = [m](const Key& key, std::tuple<Out<Key, BlockMatrix<T>>, Out<Key, BlockMatrix<T>>,
Out<Key, BlockMatrix<T>>,
Out<Key, std::vector<BlockMatrix<T>>>, Out<Key, std::vector<BlockMatrix<T>>>,
Out<Key, std::vector<BlockMatrix<T>>>>& out)
{
for (int i = 0; i < m->rows(); i++) {
for (int j = 0; j < m->cols(); j++) {
std::vector<BlockMatrix<T>> v;
if (i == 0 && j == 0) {
//std::cout << "send 0 : " << i << " " << j << std::endl;
send<0>(Key(i,j), (*m)(i,j), out);
v.push_back((*m)(i,j+1));
v.push_back((*m)(i+1,j));
send<3>(Key(i,j), v, out);
}
else if ((i == 0 && j > 0) || (i > 0 && j == 0)) {
//std::cout << "send 1 : " << i << " " << j << std::endl;
send<1>(Key(i,j), (*m)(i,j), out);
if (j < m->cols() - 1) {
//std::cout << "send 3 : " << i << " " << j << std::endl;
v.push_back((*m)(i,j+1));
//send<3>(Key(i,j), (*m)(i,j+1), out);
}
if (i < m->rows() - 1) {
//std::cout << "send 4 : " << i << " " << j << std::endl;
v.push_back((*m)(i+1,j));
//send<4>(Key(i,j), (*m)(i+1,j), out);
}
send<4>(Key(i,j), v, out);
}
else {
//std::cout << "send 2 : " << i << " " << j << std::endl;
send<2>(Key(i,j), (*m)(i,j), out);
if (j < m->cols() - 1) {
//std::cout << "send 3 : " << i << " " << j << std::endl;
v.push_back((*m)(i,j+1));
//send<3>(Key(i,j), (*m)(i,j+1), out);
}
if (i < m->rows() - 1) {
//std::cout << "send 4 : " << i << " " << j << std::endl;
v.push_back((*m)(i+1,j));
//send<4>(Key(i,j), (*m)(i+1,j), out);
}
send<5>(Key(i,j), v, out);
}
}
}
};
return make_tt<Key>(f, edges(), edges(out0, out1, out2, bottom_right0, bottom_right1, bottom_right2),
"initiator", {}, {"out0", "out1", "out2",
"bottom_right0", "bottom-right1", "bottom-right2"});
}
template <typename funcT, typename T>
auto make_wavefront0(const funcT& func, int MB, int NB, Edge<Key, BlockMatrix<T>>& input,
Edge<Key, BlockMatrix<T>>& toporleft, Edge<Key, std::vector<BlockMatrix<T>>>& bottom_right,
//Edge<Key, BlockMatrix<T>>& right,
Edge<Key, BlockMatrix<T>>& result) {
auto f = [func, MB, NB](const Key& key, BlockMatrix<T>&& input, std::vector<BlockMatrix<T>>&& bottom_right, std::tuple<Out<Key, BlockMatrix<T>>, Out<Key, BlockMatrix<T>>>& out) {
auto [i,j] = key;
int next_i = i + 1;
int next_j = j + 1;
//std::cout << "wf0 " << i << " " << j << " " << "size: " << bottom_right.size() << std::endl;
BlockMatrix<T> res = func(i, j, MB, NB, input, input, input, bottom_right[0], bottom_right[1]);
send<0>(Key(i,next_j), res, out);
send<0>(Key(next_i,j), res, out);
send<1>(Key(i,j), res, out);
};
return wrap(f, edges(input, bottom_right), edges(toporleft, result), "wavefront0", {"input", "bottom_right"},
{"toporleft", "result"});
}
// Method to generate wavefront task with single input.
template <typename funcT, typename T>
auto make_wavefront1(const funcT& func, int MB, int NB, Edge<Key, BlockMatrix<T>>& input,
Edge<Key, BlockMatrix<T>>& toporleft, Edge<Key, std::vector<BlockMatrix<T>>>& bottom_right,
Edge<Key, BlockMatrix<T>>& output1,
Edge<Key, BlockMatrix<T>>& output2, Edge<Key, BlockMatrix<T>>& result) {
auto f = [MB, NB, func](const Key& key, BlockMatrix<T>&& input, BlockMatrix<T>&& previous, std::vector<BlockMatrix<T>>&& bottom_right, std::tuple<Out<Key, BlockMatrix<T>>, Out<Key, BlockMatrix<T>>, Out<Key, BlockMatrix<T>>, Out<Key, BlockMatrix<T>>>& out) {
auto [i, j] = key;
int next_i = i + 1;
int next_j = j + 1;
//std::cout << "wf1 " << i << " " << j << "size: " << bottom_right.size() << std::endl;
BlockMatrix<T> res;
int size = bottom_right.size();
if (size == 1)
res = func(i, j, MB, NB, input, previous, previous, bottom_right[0], bottom_right[0]);
else
res = func(i, j, MB, NB, input, previous, previous, bottom_right[0], bottom_right[1]);
//func(i, j, MB, NB, input, previous, previous, bottom_right[0], bottom_right[1]);
//Processing finished for this block, so send it to output
send<3>(Key(i,j), res, out);
if (next_i < MB) {
if (j == 0) {
// Single predecessor, no left block
send<0>(Key(next_i, j), res, out); //send top block
}
else {
// Two predecessors
send<2>(Key(next_i, j), res, out); //send top block
}
}
if (next_j < NB) {
if (i == 0) {
// Single predecessor, no top block
send<0>(Key(i, next_j), res, out); //send left block
}
else {
// Two predecessors
send<1>(Key(i, next_j), res, out); //send left block
}
}
};
return wrap(f, edges(input, toporleft, bottom_right), edges(toporleft, output1, output2, result), "wavefront1",
{"input", "toporleft", "bottom_right"},
{"recur", "output1", "output2", "result"});
}
template <typename T>
auto make_result(Matrix<T> *r, const Edge<Key, BlockMatrix<T>>& result) {
auto f = [r](const Key& key, BlockMatrix<T>&& bm, std::tuple<>& out) {
auto [i,j] = key;
if (bm(i, j) != (*r)(i, j)) {
std::cout << "ERROR in block (" << i << "," << j << ")\n";
}
};
return wrap(f, edges(result), edges(), "Final Output", {"result"}, {});
}
int main(int argc, char** argv) {
int n_rows, n_cols, B;
int n_brows, n_bcols;
n_rows = n_cols = 8192;
B = 128;
bool verify = true;
n_brows = (n_rows / B) + (n_rows % B > 0);
n_bcols = (n_cols / B) + (n_cols % B > 0);
Matrix<double>* m = new Matrix<double>(n_brows, n_bcols, B, B);
Matrix<double>* m2 = new Matrix<double>(n_brows, n_bcols, B, B);
Matrix<double>* r2 = new Matrix<double>(n_brows, n_bcols, B, B);
m->fill();
m2->fill();
std::chrono::time_point<std::chrono::high_resolution_clock> beg, end;
if (verify) {
std::cout << "Computing using serial version....";
beg = std::chrono::high_resolution_clock::now();
wavefront_serial(m2, r2, n_brows, n_bcols);
end = std::chrono::high_resolution_clock::now();
std::cout << "....done!" << std::endl;
std::cout << "Serial Execution Time (milliseconds) : "
<< (std::chrono::duration_cast<std::chrono::microseconds>(end - beg).count()) / 1e3 << std::endl;
}
Edge<Key, BlockMatrix<double>> input0("input0"), input1("input1"), input2("input2"), toporleft("toporleft"),
output1("output1"), output2("output2"), result("result");
Edge<Key, std::vector<BlockMatrix<double>>> bottom_right0("bottom_right0"), bottom_right1("bottom_right1"),
bottom_right2("bottom_right2");
initialize(argc, argv, -1);
{
auto i = initiator(m, input0, input1, input2, bottom_right0, bottom_right1, bottom_right2);
auto s0 = make_wavefront0(stencil_computation<double>, n_brows, n_bcols, input0, toporleft, bottom_right0, result);
auto s1 = make_wavefront1(stencil_computation<double>, n_brows, n_bcols, input1, toporleft, bottom_right1, output1, output2, result);
auto s2 = make_wavefront2(stencil_computation<double>, n_brows, n_bcols, input2, output1, output2, bottom_right2, result);
auto res = make_result(r2, result);
auto connected = make_graph_executable(i.get());
assert(connected);
TTGUNUSED(connected);
std::cout << "Graph is connected.\n";
if (ttg::default_execution_context().rank() == 0) {
//std::cout << "==== begin dot ====\n";
//std::cout << Dot()(i.get()) << std::endl;
//std::cout << "==== end dot ====\n";
beg = std::chrono::high_resolution_clock::now();
i->invoke(Key(0,0));
//i->in<0>()->send(Key(0, 0), Control());
// This doesn't work!
// s->send<0>(Key(0,0), Control());
}
execute();
fence();
end = std::chrono::high_resolution_clock::now();
std::cout << "TTG Execution Time (milliseconds) : "
<< (std::chrono::duration_cast<std::chrono::microseconds>(end - beg).count()) / 1000 << std::endl;
}
ttg_finalize();
/*m->print();
std::cout << std::endl << std::endl;
r->print();
std::cout << std::endl << std::endl;
m2->print();
std::cout << std::endl << std::endl;
r2->print();*/
/*r->print();
std::cout << std::endl << std::endl;
m2->print();*/
delete m;
delete m2;
delete r2;
return 0;
}