-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
156 lines (128 loc) · 5.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from transformer import Transformer
def subsequent_mask (tgt_mask):
size = tgt_mask.size(-1)
return tgt_mask.to(torch.uint8) & torch.tril(torch.ones(1,size,size, dtype=torch.uint8)).to(tgt_mask.device)
class DataParallel (torch.nn.Module):
def __init__(self, model):
super(DataParallel, self).__init__()
self.model = torch.nn.DataParallel(model).cuda()
def forward(self, *input):
return self.model(*input)
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.model.module, name)
class Model(nn.Module):
def __init__ (self, vocab_size, n_layers, n_heads, model_depth, ff_depth, dropout,device):
super(Model, self).__init__()
self.T = Transformer(vocab_size, n_layers, n_heads, model_depth, ff_depth, dropout)
self.device = device
def forward(self, src, tgt):
#src = pad_pack(src).to(self.device)
src_mask = (src != 0).unsqueeze(-2).to(self.device)
#tgt = pad_pack(tgt).to(self.device)
tgt_mask = subsequent_mask((tgt != 0).unsqueeze(-2)).type_as(src_mask)
out = self.T(src, tgt, src_mask, tgt_mask)
#out = self.T.generator(out)[:,-1]
out = self.T.generator(out)
return out
def predict_single(self, inp, beam=1, temp=0, naug=0):
naug = 0
naug += 1
with torch.no_grad():
self.T.eval()
src = []
for b in range(beam):
src += [inp]
src = pad_pack(src).to(self.device)
src_mask = (src != 0).unsqueeze(-2).to(self.device)
src = self.T.src_embedder(src)
src_mem = self.T.encoder(src, src_mask)
cands = [[766] for b in range(beam)]
probs = [[] for b in range(beam)]
res_probs = []
res = []
for step in range(150):
if beam <= 0:
break
aug_cands = []
for c in cands:
aug_cands += [c]*naug
tgt = pad_pack(aug_cands).to(self.device)
tgt_mask = subsequent_mask((tgt != 0).unsqueeze(-2)).type_as(src_mask)
out = self.T.decoder(self.T.tgt_embedder(tgt), src_mem, src_mask, tgt_mask)
out = self.T.generator(out)[:,-1]
out = out.view(beam, naug, out.shape[-1])
out = out.mean(dim=1)
pbs,wds = torch.sort(out, dim=1, descending=True)
step_cands = []
step_probs = []
for i in range(beam):
for j in range(beam*2):
step_cands.append(cands[i]+[wds[i,j].tolist()])
step_probs.append(probs[i]+[pbs[i,j].tolist()])
step_cands, step_probs = remove_duplicates(step_cands, step_probs)
best_ids = np.argsort([prob_score(pb) for pb in step_probs])[::-1][:beam]
cands = []
probs = []
for i in best_ids:
if step_cands[i][-1] == 1:
res.append(step_cands[i])
res_probs.append(step_probs[i])
beam -= 1
src_mem = src_mem[:-1*naug]
src_mask = src_mask[:-1*naug]
src = src[:-1*naug]
else:
cands.append(step_cands[i])
probs.append(step_probs[i])
if beam > 0:
res += cands[:beam]
res_probs += probs[:beam]
pred = []
for r in res:
try:
def is_digit(str):
try:
tmp = float(str)
return True
except ValueError:
return False
pred.append(r)
except Exception as inst:
print("error:",inst)
pred.append(None)
pred_probs = [prob_score(pb) for pb in res_probs]
order = np.argsort(pred_probs)[::-1]
final_outputs = np.array(pred)[order].tolist()
final_probs = np.array(pred_probs)[order].tolist()
return final_outputs, final_probs
def predict(self, X, beam=1, temp=0, naug=0):
pred = [[None for i in range(len(X))] for b in range(beam)]
for i in tqdm(range(len(X))):
cands, probs = self.predict_single(X[i], beam=beam, temp=temp, naug=naug)
if len(cands) > 0:
for b in range(beam):
pred[b][i] = cands[b]
return pred
def prob_score(prob):
return np.exp(np.mean(prob))
def remove_duplicates (cands, probs):
use_cands = []
use_probs = []
for i in range(len(cands)):
if cands[i] not in use_cands:
use_cands.append(cands[i])
use_probs.append(probs[i])
return use_cands, use_probs
def pad_pack (sequences):
maxlen = max(map(len, sequences))
batch = torch.LongTensor(len(sequences),maxlen).fill_(0)
for i,x in enumerate(sequences):
batch[i,:len(x)] = torch.LongTensor(x)
return batch