forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
181 lines (173 loc) · 6.15 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
Collections:
- Name: RepPoints
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- Group Normalization
- FPN
- RepPoints
- ResNet
Paper:
URL: https://arxiv.org/abs/1904.11490
Title: 'RepPoints: Point Set Representation for Object Detection'
README: configs/reppoints/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/reppoints_detector.py#L9
Version: v2.0.0
Models:
- Name: bbox_r50_grid_fpn_gn-neck+head_1x_coco
In Collection: RepPoints
Config: configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (ms/im):
- value: 62.89
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 36.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth
- Name: bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco
In Collection: RepPoints
Config: configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (ms/im):
- value: 64.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth
- Name: reppoints_moment_r50_fpn_1x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 3.3
inference time (ms/im):
- value: 54.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth
- Name: reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (ms/im):
- value: 57.14
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth
- Name: reppoints_moment_r50_fpn_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (ms/im):
- value: 57.14
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth
- Name: reppoints_moment_r101_fpn_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 5.8
inference time (ms/im):
- value: 72.99
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth
- Name: reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 5.9
inference time (ms/im):
- value: 82.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth
- Name: reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 7.1
inference time (ms/im):
- value: 107.53
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth