-
Notifications
You must be signed in to change notification settings - Fork 54
/
train_MPUR.py
192 lines (159 loc) · 6.25 KB
/
train_MPUR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import math
from collections import OrderedDict
import numpy
import os
import ipdb
import random
import torch
import torch.optim as optim
from os import path
import planning
import utils
from dataloader import DataLoader
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#################################################
# Train a policy / controller
#################################################
opt = utils.parse_command_line()
# Create file_name
opt.model_file = path.join(opt.model_dir, 'policy_networks', 'MPUR-' + opt.policy)
utils.build_model_file_name(opt)
os.system('mkdir -p ' + path.join(opt.model_dir, 'policy_networks'))
random.seed(opt.seed)
numpy.random.seed(opt.seed)
torch.manual_seed(opt.seed)
# Define default device
opt.device = torch.device('cuda' if torch.cuda.is_available() and not opt.no_cuda else 'cpu')
if torch.cuda.is_available() and opt.no_cuda:
print('WARNING: You have a CUDA device, so you should probably run without -no_cuda')
# load the model
model_path = path.join(opt.model_dir, opt.mfile)
if path.exists(model_path):
model = torch.load(model_path)
elif path.exists(opt.mfile):
model = torch.load(opt.mfile)
else:
raise runtime_error(f'couldn\'t find file {opt.mfile}')
if not hasattr(model.encoder, 'n_channels'):
model.encoder.n_channels = 3
if type(model) is dict: model = model['model']
model.opt.lambda_l = opt.lambda_l # used by planning.py/compute_uncertainty_batch
model.opt.lambda_o = opt.lambda_o # used by planning.py/compute_uncertainty_batch
if opt.value_model != '':
value_function = torch.load(path.join(opt.model_dir, 'value_functions', opt.value_model)).to(opt.device)
model.value_function = value_function
# Create policy
model.create_policy_net(opt)
optimizer = optim.Adam(model.policy_net.parameters(), opt.lrt) # POLICY optimiser ONLY!
# Load normalisation stats
stats = torch.load('traffic-data/state-action-cost/data_i80_v0/data_stats.pth')
model.stats = stats # used by planning.py/compute_uncertainty_batch
if 'ten' in opt.mfile:
p_z_file = opt.model_dir + opt.mfile + '.pz'
p_z = torch.load(p_z_file)
model.p_z = p_z
# Send to GPU if possible
model.to(opt.device)
model.policy_net.stats_d = {}
for k, v in stats.items():
if isinstance(v, torch.Tensor):
model.policy_net.stats_d[k] = v.to(opt.device)
if opt.learned_cost:
print('[loading cost regressor]')
model.cost = torch.load(path.join(opt.model_dir, opt.mfile + '.cost.model'))['model']
dataloader = DataLoader(None, opt, opt.dataset)
model.train()
model.opt.u_hinge = opt.u_hinge
planning.estimate_uncertainty_stats(model, dataloader, n_batches=50, npred=opt.npred)
model.eval()
def start(what, nbatches, npred):
train = True if what is 'train' else False
model.train()
model.policy_net.train()
n_updates, grad_norm = 0, 0
total_losses = dict(
proximity=0,
uncertainty=0,
lane=0,
offroad=0,
action=0,
policy=0,
)
for j in range(nbatches):
inputs, actions, targets, ids, car_sizes = dataloader.get_batch_fm(what, npred)
pred, actions = planning.train_policy_net_mpur(
model, inputs, targets, car_sizes, n_models=10, lrt_z=opt.lrt_z,
n_updates_z=opt.z_updates, infer_z=opt.infer_z
)
pred['policy'] = pred['proximity'] + \
opt.u_reg * pred['uncertainty'] + \
opt.lambda_l * pred['lane'] + \
opt.lambda_a * pred['action'] + \
opt.lambda_o * pred['offroad']
if not math.isnan(pred['policy'].item()):
if train:
optimizer.zero_grad()
pred['policy'].backward() # back-propagation through time!
grad_norm += utils.grad_norm(model.policy_net).item()
torch.nn.utils.clip_grad_norm_(model.policy_net.parameters(), opt.grad_clip)
optimizer.step()
for loss in total_losses: total_losses[loss] += pred[loss].item()
n_updates += 1
else:
print('warning, NaN') # Oh no... Something got quite fucked up!
ipdb.set_trace()
if j == 0 and opt.save_movies and train:
# save videos of normal and adversarial scenarios
for b in range(opt.batch_size):
state_img = pred['state_img'][b]
state_vct = pred['state_vct'][b]
utils.save_movie(opt.model_file + f'.mov/sampled/mov{b}', state_img, state_vct, None, actions[b])
del inputs, actions, targets, pred
for loss in total_losses: total_losses[loss] /= n_updates
if train: print(f'[avg grad norm: {grad_norm / n_updates:.4f}]')
return total_losses
print('[training]')
utils.log(opt.model_file + '.log', f'[job name: {opt.model_file}]')
n_iter = 0
losses = OrderedDict(
p='proximity',
l='lane',
o='offroad',
u='uncertainty',
a='action',
π='policy',
)
writer = utils.create_tensorboard_writer(opt)
for i in range(500):
train_losses = start('train', opt.epoch_size, opt.npred)
with torch.no_grad(): # Torch, please please please, do not track computations :)
valid_losses = start('valid', opt.epoch_size // 2, opt.npred)
if writer is not None:
for key in train_losses:
writer.add_scalar(f'Loss/train_{key}', train_losses[key], i)
for key in valid_losses:
writer.add_scalar(f'Loss/valid_{key}', valid_losses[key], i)
n_iter += opt.epoch_size
model.to('cpu')
torch.save(dict(
model=model,
optimizer=optimizer.state_dict(),
opt=opt,
n_iter=n_iter,
), opt.model_file + '.model')
if (n_iter / opt.epoch_size) % 10 == 0:
torch.save(dict(
model=model,
optimizer=optimizer.state_dict(),
opt=opt,
n_iter=n_iter,
), opt.model_file + f'step{n_iter}.model')
model.to(opt.device)
log_string = f'step {n_iter} | '
log_string += 'train: [' + ', '.join(f'{k}: {train_losses[v]:.4f}' for k, v in losses.items()) + '] | '
log_string += 'valid: [' + ', '.join(f'{k}: {valid_losses[v]:.4f}' for k, v in losses.items()) + ']'
print(log_string)
utils.log(opt.model_file + '.log', log_string)
if writer is not None:
writer.close()