-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
163 lines (145 loc) · 6.25 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import torch
from torch.utils.data import Dataset
import utils
from imgaug.augmentables.segmaps import SegmentationMapsOnImage
class TongueMaskDataset(Dataset):
"""Tongue masks dataset."""
def __init__(self, img, mask=None, mask_dist_to_boundary=None, bbox=None, threshold=4.0, img_size=(256, 256), train=True):
"""
Args:
img (ND-array): Image data.
mask (ND-array): Mask data.
bbox (ND-array): Bounding box data of the form [[x1, x2, y1, y2]].
img_size (tuple): Size of the image to be returned.
train (bool): Whether the dataset is for training or testing.
"""
self.img = img
self.mask = mask
self.bbox = bbox
self.threshold = threshold
self.mask_dist_to_boundary = mask_dist_to_boundary #masks_to_edges(self.mask)
self.train = train
self.img_size = img_size
self.img = self.preprocess_imgs(self.img, bbox=self.bbox)
self.mask = self.preprocess_mask(self.mask, bbox=self.bbox, dtype=np.uint8)
self.mask_dist_to_boundary = np.array(self.preprocess_mask(self.mask_dist_to_boundary, bbox=self.bbox, dtype=np.float32, interpolation='bilinear'))
self.mask_dist_to_boundary = np.squeeze(self.mask_dist_to_boundary, axis=1)
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
img = self.img[idx]
mask = self.mask[idx]
mask_dist_to_boundary = self.mask_dist_to_boundary[idx]
if self.train:
img, mask, mask_dist_to_boundary = utils.augment_data(img, mask, mask_dist_to_boundary)
# Get edges from the distance to boundary mask
mask_edges = (mask_dist_to_boundary < self.threshold) * (mask > 0)
# If not a tensor, convert to tensor
if not isinstance(img, torch.Tensor):
img = torch.from_numpy(img)
if not isinstance(mask, torch.Tensor):
mask = torch.from_numpy(mask).to(torch.float)
if not isinstance(mask_edges, torch.Tensor):
mask_edges = torch.from_numpy(mask_edges)
if not isinstance(mask_dist_to_boundary, torch.Tensor):
mask_dist_to_boundary = torch.from_numpy(mask_dist_to_boundary)
sample = {'image': img, 'mask': mask, 'mask_edges': mask_edges, 'mask_dist_to_boundary': mask_dist_to_boundary, 'idx': idx}
return sample
def preprocess_mask(self, mask_data, bbox, dtype=None, interpolation='nearest'):
"""
Parameters
----------
mask_data : list of ND-array of shape (C, W, H)
List of masks.
Returns
-------
mask_data : list of ND-array of shape (C, W, H)
List of masks.
"""
masks = []
for m in mask_data:
if dtype is not None:
m = m.astype(dtype)
m = torch.from_numpy(m)#.type(torch.float) # convert to uint8
# 1. Crop mask
m = utils.crop_image(m, bbox)
m, _ = utils.pad_img_to_square(m)
if interpolation == 'bilinear':
m = utils.resize_image(m, self.img_size)
elif interpolation == 'nearest':
m = SegmentationMapsOnImage(m.numpy(), shape=self.img_size)
m = m.resize(self.img_size, interpolation="nearest").get_arr()
else:
raise ValueError('Interpolation method not supported.')
m = np.expand_dims(m, axis=0)
masks.append(m)
return masks
def preprocess_imgs(self, image_data, bbox):
"""
Preprocess images to be in the range [0, 1] and normalize99
Parameters
----------
image_data : list of ND-array of shape (C, W, H)
List of images.
Returns
-------
image_data : list of ND-array of shape (C, W, H)
List of images.
"""
imgs = []
for im in image_data:
im = torch.from_numpy(im)
# Normalize
im = utils.normalize99(im)
# 1. Crop image
im = utils.crop_image(im, bbox)
# 2. Pad image to square
im, _ = utils.pad_img_to_square(im)
# 3. Resize image to resize_shape for model input
im = utils.resize_image(im, self.img_size)
imgs.append(im)
return imgs
def preprocess_data(self, image, mask, mask_edges, bbox):
"""
Preproccesing of image involves:
1. Cropping image to select bounding box (bbox) region
2. Padding image size to be square
3. Resize image to Lx x Ly for model input
Parameters
-------------
image: ND-array
image of size [(Lz) x Ly x Lx]
mask: ND-array
mask of size [(Lz) x Ly x Lx]
mask_edges: ND-array
mask outline/edges of size [(Lz) x Ly x Lx]
mask_dist_to_boundary: ND-array
distance to boundary of size [(Lz) x Ly x Lx]
bbox: tuple of size (4,)
bounding box positions in order x1, x2, y1, y2
Returns
--------------
image: ND-array
preprocessed image of size [1 x Ly x Lx]
mask: ND-array
preprocessed mask of size [1 x Ly x Lx]
"""
# 1. Crop image
image = utils.crop_image(image, bbox)
mask = utils.crop_image(mask, bbox)
mask_edges = utils.crop_image(mask_edges, bbox)
y1, _, x1, _ = bbox
# 2. Pad image to square
image, (pad_y_top, pad_y_bottom, pad_x_left, pad_x_right) = utils.pad_img_to_square(image)
mask, _ = utils.pad_img_to_square(mask)
mask_edges, _ = utils.pad_img_to_square(mask_edges)
# 3. Resize image to resize_shape for model input
image = utils.resize_image(image, self.img_size)
mask = SegmentationMapsOnImage(mask.numpy(), shape=image.shape)
mask = mask.resize(self.img_size, interpolation="nearest").get_arr()
mask = np.expand_dims(mask, axis=0)
mask_edges = SegmentationMapsOnImage(mask_edges.numpy(), shape=image.shape)
mask_edges = mask_edges.resize(self.img_size, interpolation="nearest").get_arr()
mask_edges = np.expand_dims(mask_edges, axis=0)
return image, mask, mask_edges