forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detr_loss.py
230 lines (210 loc) · 9.37 KB
/
detr_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from .iou_loss import GIoULoss
from ..transformers import bbox_cxcywh_to_xyxy, sigmoid_focal_loss
__all__ = ['DETRLoss']
@register
class DETRLoss(nn.Layer):
__shared__ = ['num_classes', 'use_focal_loss']
__inject__ = ['matcher']
def __init__(self,
num_classes=80,
matcher='HungarianMatcher',
loss_coeff={
'class': 1,
'bbox': 5,
'giou': 2,
'no_object': 0.1,
'mask': 1,
'dice': 1
},
aux_loss=True,
use_focal_loss=False):
r"""
Args:
num_classes (int): The number of classes.
matcher (HungarianMatcher): It computes an assignment between the targets
and the predictions of the network.
loss_coeff (dict): The coefficient of loss.
aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
use_focal_loss (bool): Use focal loss or not.
"""
super(DETRLoss, self).__init__()
self.num_classes = num_classes
self.matcher = matcher
self.loss_coeff = loss_coeff
self.aux_loss = aux_loss
self.use_focal_loss = use_focal_loss
if not self.use_focal_loss:
self.loss_coeff['class'] = paddle.full([num_classes + 1],
loss_coeff['class'])
self.loss_coeff['class'][-1] = loss_coeff['no_object']
self.giou_loss = GIoULoss()
def _get_loss_class(self, logits, gt_class, match_indices, bg_index,
num_gts):
# logits: [b, query, num_classes], gt_class: list[[n, 1]]
target_label = paddle.full(logits.shape[:2], bg_index, dtype='int64')
bs, num_query_objects = target_label.shape
if sum(len(a) for a in gt_class) > 0:
index, updates = self._get_index_updates(num_query_objects,
gt_class, match_indices)
target_label = paddle.scatter(
target_label.reshape([-1, 1]), index, updates.astype('int64'))
target_label = target_label.reshape([bs, num_query_objects])
if self.use_focal_loss:
target_label = F.one_hot(target_label,
self.num_classes + 1)[..., :-1]
return {
'loss_class': self.loss_coeff['class'] * sigmoid_focal_loss(
logits, target_label, num_gts / num_query_objects)
if self.use_focal_loss else F.cross_entropy(
logits, target_label, weight=self.loss_coeff['class'])
}
def _get_loss_bbox(self, boxes, gt_bbox, match_indices, num_gts):
# boxes: [b, query, 4], gt_bbox: list[[n, 4]]
loss = dict()
if sum(len(a) for a in gt_bbox) == 0:
loss['loss_bbox'] = paddle.to_tensor([0.])
loss['loss_giou'] = paddle.to_tensor([0.])
return loss
src_bbox, target_bbox = self._get_src_target_assign(boxes, gt_bbox,
match_indices)
loss['loss_bbox'] = self.loss_coeff['bbox'] * F.l1_loss(
src_bbox, target_bbox, reduction='sum') / num_gts
loss['loss_giou'] = self.giou_loss(
bbox_cxcywh_to_xyxy(src_bbox), bbox_cxcywh_to_xyxy(target_bbox))
loss['loss_giou'] = loss['loss_giou'].sum() / num_gts
loss['loss_giou'] = self.loss_coeff['giou'] * loss['loss_giou']
return loss
def _get_loss_mask(self, masks, gt_mask, match_indices, num_gts):
# masks: [b, query, h, w], gt_mask: list[[n, H, W]]
loss = dict()
if sum(len(a) for a in gt_mask) == 0:
loss['loss_mask'] = paddle.to_tensor([0.])
loss['loss_dice'] = paddle.to_tensor([0.])
return loss
src_masks, target_masks = self._get_src_target_assign(masks, gt_mask,
match_indices)
src_masks = F.interpolate(
src_masks.unsqueeze(0),
size=target_masks.shape[-2:],
mode="bilinear")[0]
loss['loss_mask'] = self.loss_coeff['mask'] * F.sigmoid_focal_loss(
src_masks,
target_masks,
paddle.to_tensor(
[num_gts], dtype='float32'))
loss['loss_dice'] = self.loss_coeff['dice'] * self._dice_loss(
src_masks, target_masks, num_gts)
return loss
def _dice_loss(self, inputs, targets, num_gts):
inputs = F.sigmoid(inputs)
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_gts
def _get_loss_aux(self, boxes, logits, gt_bbox, gt_class, bg_index,
num_gts):
loss_class = []
loss_bbox = []
loss_giou = []
for aux_boxes, aux_logits in zip(boxes, logits):
match_indices = self.matcher(aux_boxes, aux_logits, gt_bbox,
gt_class)
loss_class.append(
self._get_loss_class(aux_logits, gt_class, match_indices,
bg_index, num_gts)['loss_class'])
loss_ = self._get_loss_bbox(aux_boxes, gt_bbox, match_indices,
num_gts)
loss_bbox.append(loss_['loss_bbox'])
loss_giou.append(loss_['loss_giou'])
loss = {
'loss_class_aux': paddle.add_n(loss_class),
'loss_bbox_aux': paddle.add_n(loss_bbox),
'loss_giou_aux': paddle.add_n(loss_giou)
}
return loss
def _get_index_updates(self, num_query_objects, target, match_indices):
batch_idx = paddle.concat([
paddle.full_like(src, i) for i, (src, _) in enumerate(match_indices)
])
src_idx = paddle.concat([src for (src, _) in match_indices])
src_idx += (batch_idx * num_query_objects)
target_assign = paddle.concat([
paddle.gather(
t, dst, axis=0) for t, (_, dst) in zip(target, match_indices)
])
return src_idx, target_assign
def _get_src_target_assign(self, src, target, match_indices):
src_assign = paddle.concat([
paddle.gather(
t, I, axis=0) if len(I) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (I, _) in zip(src, match_indices)
])
target_assign = paddle.concat([
paddle.gather(
t, J, axis=0) if len(J) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (_, J) in zip(target, match_indices)
])
return src_assign, target_assign
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None):
r"""
Args:
boxes (Tensor): [l, b, query, 4]
logits (Tensor): [l, b, query, num_classes]
gt_bbox (List(Tensor)): list[[n, 4]]
gt_class (List(Tensor)): list[[n, 1]]
masks (Tensor, optional): [b, query, h, w]
gt_mask (List(Tensor), optional): list[[n, H, W]]
"""
match_indices = self.matcher(boxes[-1].detach(), logits[-1].detach(),
gt_bbox, gt_class)
num_gts = sum(len(a) for a in gt_bbox)
try:
# TODO: Paddle does not have a "paddle.distributed.is_initialized()"
num_gts = paddle.to_tensor([num_gts], dtype=paddle.float32)
paddle.distributed.all_reduce(num_gts)
num_gts = paddle.clip(
num_gts / paddle.distributed.get_world_size(), min=1).item()
except:
num_gts = max(num_gts.item(), 1)
total_loss = dict()
total_loss.update(
self._get_loss_class(logits[-1], gt_class, match_indices,
self.num_classes, num_gts))
total_loss.update(
self._get_loss_bbox(boxes[-1], gt_bbox, match_indices, num_gts))
if masks is not None and gt_mask is not None:
total_loss.update(
self._get_loss_mask(masks, gt_mask, match_indices, num_gts))
if self.aux_loss:
total_loss.update(
self._get_loss_aux(boxes[:-1], logits[:-1], gt_bbox, gt_class,
self.num_classes, num_gts))
return total_loss