-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_with_preset.py
executable file
·140 lines (110 loc) · 5.19 KB
/
run_with_preset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
import argparse
import os
import subprocess
import sys
import yaml
CLI_ARGS_MAIN_PERPLEXITY = [
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct",
"interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
"low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
"model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n",
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
"simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
"verbose-prompt"
]
CLI_ARGS_LLAMA_BENCH = [
"batch-size", "memory-f32", "low-vram", "model", "mul-mat-q", "n-gen", "n-gpu-layers",
"n-prompt", "output", "repetitions", "tensor-split", "threads", "verbose"
]
CLI_ARGS_SERVER = [
"alias", "batch-size", "ctx-size", "embedding", "host", "memory-f32", "lora", "lora-base",
"low-vram", "main-gpu", "mlock", "model", "n-gpu-layers", "n-probs", "no-mmap", "no-mul-mat-q",
"numa", "path", "port", "rope-freq-base", "timeout", "rope-freq-scale", "tensor-split",
"threads", "verbose"
]
description = """Run llama.cpp binaries with presets from YAML file(s).
To specify which binary should be run, specify the "binary" property (main, perplexity, llama-bench, and server are supported).
To get a preset file template, run a llama.cpp binary with the "--logdir" CLI argument.
Formatting considerations:
- The YAML property names are the same as the CLI argument names of the corresponding binary.
- Properties must use the long name of their corresponding llama.cpp CLI arguments.
- Like the llama.cpp binaries the property names do not differentiate between hyphens and underscores.
- Flags must be defined as "<PROPERTY_NAME>: true" to be effective.
- To define the logit_bias property, the expected format is "<TOKEN_ID>: <BIAS>" in the "logit_bias" namespace.
- To define multiple "reverse_prompt" properties simultaneously the expected format is a list of strings.
- To define a tensor split, pass a list of floats.
"""
usage = "run_with_preset.py [-h] [yaml_files ...] [--<ARG_NAME> <ARG_VALUE> ...]"
epilog = (" --<ARG_NAME> specify additional CLI ars to be passed to the binary (override all preset files). "
"Unknown args will be ignored.")
parser = argparse.ArgumentParser(
description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-bin", "--binary", help="The binary to run.")
parser.add_argument("yaml_files", nargs="*",
help="Arbitrary number of YAML files from which to read preset values. "
"If two files specify the same values the later one will be used.")
known_args, unknown_args = parser.parse_known_args()
if not known_args.yaml_files and not unknown_args:
parser.print_help()
sys.exit(0)
props = dict()
for yaml_file in known_args.yaml_files:
with open(yaml_file, "r") as f:
props.update(yaml.load(f, yaml.SafeLoader))
props = {prop.replace("_", "-"): val for prop, val in props.items()}
binary = props.pop("binary", "main")
if known_args.binary:
binary = known_args.binary
if os.path.exists(f"./{binary}"):
binary = f"./{binary}"
if binary.lower().endswith("main") or binary.lower().endswith("perplexity"):
cli_args = CLI_ARGS_MAIN_PERPLEXITY
elif binary.lower().endswith("llama-bench"):
cli_args = CLI_ARGS_LLAMA_BENCH
elif binary.lower().endswith("server"):
cli_args = CLI_ARGS_SERVER
else:
print(f"Unknown binary: {binary}")
sys.exit(1)
command_list = [binary]
for cli_arg in cli_args:
value = props.pop(cli_arg, None)
if not value or value == -1:
continue
if cli_arg == "logit-bias":
for token, bias in value.items():
command_list.append("--logit-bias")
command_list.append(f"{token}{bias:+}")
continue
if cli_arg == "reverse-prompt" and not isinstance(value, str):
for rp in value:
command_list.append("--reverse-prompt")
command_list.append(str(rp))
continue
command_list.append(f"--{cli_arg}")
if cli_arg == "tensor-split":
command_list.append(",".join([str(v) for v in value]))
continue
value = str(value)
if value != "True":
command_list.append(str(value))
num_unused = len(props)
if num_unused > 10:
print(f"The preset file contained a total of {num_unused} unused properties.")
elif num_unused > 0:
print("The preset file contained the following unused properties:")
for prop, value in props.items():
print(f" {prop}: {value}")
command_list += unknown_args
sp = subprocess.Popen(command_list)
while sp.returncode is None:
try:
sp.wait()
except KeyboardInterrupt:
pass
sys.exit(sp.returncode)