-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimg2img.py
138 lines (120 loc) · 4.3 KB
/
img2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
from src.util.io import get_output_path, load_img, get_model, export_imgs, save_args
from omegaconf import OmegaConf
from src.samplers import DDIMSampler
import os, shutil
import torch
from einops import repeat
from torch import autocast
from contextlib import nullcontext
from tqdm import tqdm, trange
from argparse import ArgumentParser
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"-d", "--device", type=int, default=0, help="The device to run the job"
)
parser.add_argument(
"-p", "--prompt", type=str, required=True, help="Prompt to convert to image"
)
parser.add_argument(
"-v",
"--variations",
type=int,
default=1,
help="Number of variations to be generated",
)
parser.add_argument(
"-i",
"--init-img",
type=str,
required=True,
help="Initial image to convert",
)
parser.add_argument(
"-o", "--output-dir", default="out/img2img", help="Directory to save outputs"
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast",
)
parser.add_argument(
"-s",
"--strength",
type=float,
help="Influence of the text prompt",
default=0.75,
)
return parser.parse_args()
def main(args):
model = get_model()
model.eval()
model.to(args.device)
sampler = DDIMSampler(model)
output_dir = get_output_path(args.output_dir, "run")
os.makedirs(output_dir)
save_args(output_dir, args)
samples_dir = os.path.join(output_dir, "samples")
os.makedirs(samples_dir)
with open(os.path.join(output_dir, "prompt.txt"), "w") as handler:
handler.write(args.prompt)
shutil.copy(
args.init_img, os.path.join(output_dir, os.path.split(args.init_img)[1])
)
# opt
batch_size = 1
ddim_steps = 50
ddim_eta = 0.0
data = [args.prompt] * batch_size
scale = 5.0
assert os.path.isfile(args.init_img)
init_image = load_img(args.init_img).to(args.device)
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
init_latent = model.get_first_stage_encoding(
model.encode_first_stage(init_image)
) # move to latent space
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False)
assert 0.0 <= args.strength <= 1.0, "can only work with strength in [0.0, 1.0]"
t_enc = int(args.strength * ddim_steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if args.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list()
for n in trange(args.variations, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(args.device),
)
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp(
(x_samples + 1.0) / 2.0, min=0.0, max=1.0
)
all_samples.append(x_samples)
all_samples = (
torch.concat(all_samples).cpu().permute(0, 2, 3, 1).numpy() * 255
).astype(np.uint8)
export_imgs(all_samples, samples_dir)
if __name__ == "__main__":
args = parse_args()
main(args)