Skip to content

Latest commit

 

History

History
6 lines (4 loc) · 2.8 KB

2408.06543.md

File metadata and controls

6 lines (4 loc) · 2.8 KB

HDRGS: High Dynamic Range Gaussian Splatting

Recent years have witnessed substantial advancements in the field of 3D reconstruction from 2D images, particularly following the introduction of the neural radiance field (NeRF) technique. However, reconstructing a 3D high dynamic range (HDR) radiance field, which aligns more closely with real-world conditions, from 2D multi-exposure low dynamic range (LDR) images continues to pose significant challenges. Approaches to this issue fall into two categories: grid-based and implicit-based. Implicit methods, using multi-layer perceptrons (MLP), face inefficiencies, limited solvability, and overfitting risks. Conversely, grid-based methods require significant memory and struggle with image quality and long training times. In this paper, we introduce Gaussian Splatting-a recent, high-quality, real-time 3D reconstruction technique-into this domain. We further develop the High Dynamic Range Gaussian Splatting (HDR-GS) method, designed to address the aforementioned challenges. This method enhances color dimensionality by including luminance and uses an asymmetric grid for tone-mapping, swiftly and precisely converting pixel irradiance to color. Our approach improves HDR scene recovery accuracy and integrates a novel coarse-to-fine strategy to speed up model convergence, enhancing robustness against sparse viewpoints and exposure extremes, and preventing local optima. Extensive testing confirms that our method surpasses current state-of-the-art techniques in both synthetic and real-world scenarios.

近年来,随着神经辐射场(NeRF)技术的引入,基于2D图像的3D重建领域取得了显著进展。然而,从2D多曝光低动态范围(LDR)图像重建与现实条件更为接近的3D高动态范围(HDR)辐射场仍然面临重大挑战。针对这一问题的方法通常分为两类:基于网格的方法和基于隐式的方法。隐式方法通常使用多层感知机(MLP),但存在效率低下、可解性有限以及过拟合的风险。相比之下,基于网格的方法虽然内存需求巨大,但在图像质量和训练时间方面仍存在困难。 在本文中,我们将高质量、实时的3D重建技术——高斯点绘(Gaussian Splatting)引入到这一领域,并进一步开发了高动态范围高斯点绘(HDR-GS)方法,旨在解决上述挑战。该方法通过引入亮度来增强颜色维度,并使用非对称网格进行色调映射,从而快速且准确地将像素辐照度转换为颜色。我们的方法不仅提高了HDR场景恢复的准确性,还集成了一种粗到细的策略,加速了模型的收敛,增强了在稀疏视角和极端曝光下的鲁棒性,并避免了局部最优解。广泛的测试结果表明,我们的方法在合成和现实场景中均超越了当前的最先进技术。