Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Questions regarding full finetuning #145

Open
Kiinory opened this issue Dec 31, 2024 · 0 comments
Open

Questions regarding full finetuning #145

Kiinory opened this issue Dec 31, 2024 · 0 comments

Comments

@Kiinory
Copy link

Kiinory commented Dec 31, 2024

When I perform full finetuning using a small dialogue dataset (500 samples from llava-instruct-80k), I find that Bunny's performance on llava in the wild deteriorates. Could this be solely due to the small size of the subsequent training dataset, or is it a parameter configuration issue? While I use the same dataset for full finetuning on LLaVA-1.5, its performance on llava in the wild improves. I’m unsure where the problem lies. The training script is as follows:

MODEL_TYPE=phi-3

PRETRAIN_DIR=bunny-$MODEL_TYPE-pretrain

srun python bunny/train/train.py
--model_name_or_path Bunny-v1_1-4B
--model_type $MODEL_TYPE
--version phi3
--data_path train_data.json
--image_folder normal_loss_images
--vision_tower siglip-so400m-patch14-384
--use_s2 True
--mm_projector_type mlp2x_gelu
--image_aspect_ratio pad
--group_by_modality_length False
--bf16 True
--output_dir ./checkpoints/bunny-v1_1-4B-test
--num_train_epochs 1
--per_device_train_batch_size 1
--per_device_eval_batch_size 4
--gradient_accumulation_steps 8
--eval_strategy "no"
--save_strategy "epoch"
--save_steps 500
--save_total_limit 3
--learning_rate 2e-5
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1
--tf32 True
--model_max_length 4096
--gradient_checkpointing True
--dataloader_num_workers 2
--lazy_preprocess True
--report_to wandb

Additionally, I unfroze all the model parameters in the code and only froze the vision_tower
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant