-
Notifications
You must be signed in to change notification settings - Fork 332
/
tvm_onnx_resnet18_inference.py
45 lines (34 loc) · 1.11 KB
/
tvm_onnx_resnet18_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import onnx
import numpy as np
import tvm
from tvm import te
import tvm.relay as relay
onnx_model = onnx.load('resnet18.onnx')
from PIL import Image
image_path = 'cat.png'
img = Image.open(image_path).resize((224, 224))
# Preprocess the image and convert to tensor
from torchvision import transforms
my_preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
img = my_preprocess(img)
x = np.expand_dims(img, 0)
target = "llvm"
input_name = "input.1"
shape_dict = {input_name: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)
print(mod)
with tvm.transform.PassContext(opt_level=6):
intrp = relay.build_module.create_executor("graph", mod, tvm.cpu(0), target)
######################################################################
# Execute on TVM
# ---------------------------------------------
dtype = "float32"
tvm_output = intrp.evaluate()(tvm.nd.array(x.astype(dtype)), **params).asnumpy()
print(np.argmax(tvm_output))