forked from AIFSH/ComfyUI-MimicBrush
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
222 lines (178 loc) · 8.49 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import cv2
import torch
import numpy as np
from PIL import Image
from cuda_malloc import cuda_malloc_supported
import torch.nn.functional as F
from torchvision.transforms import Compose
from MimicBrush.depthanything.fast_import import depth_anything_model
from MimicBrush.depthanything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from diffusers.image_processor import VaeImageProcessor
from MimicBrush.mimicbrush import MimicBrush_RefNet
from MimicBrush.models.depth_guider import DepthGuider
from MimicBrush.models.ReferenceNet import ReferenceNet
from MimicBrush.models.pipeline_mimicbrush import MimicBrushPipeline
from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
now_dir = os.path.dirname(os.path.abspath(__file__))
weights_path = os.path.join(now_dir,"weights")
os.makedirs(weights_path,exist_ok=True)
ms_snapshot_download('xichen/cleansd', cache_dir=weights_path)
print('=== Pretrained SD weights downloaded ===')
ms_snapshot_download('xichen/MimicBrush', cache_dir=weights_path)
print('=== MimicBrush weights downloaded ===')
cleansd_weights_path = os.path.join(weights_path,"xichen","cleansd")
mimicbrush_weights_path = os.path.join(weights_path,"xichen","MimicBrush")
# === load the checkpoint ===
base_model_path = os.path.join(cleansd_weights_path,"stable-diffusion-inpainting")
vae_model_path = os.path.join(mimicbrush_weights_path,"sd-vae-ft-mse")
image_encoder_path = os.path.join(mimicbrush_weights_path,"image_encoder")
ref_model_path = os.path.join(cleansd_weights_path,"stable-diffusion-v1-5")
mimicbrush_ckpt = os.path.join(mimicbrush_weights_path,"mimicbrush","mimicbrush.bin")
depth_model_path = os.path.join(mimicbrush_weights_path,"depth_model","depth_anything_vitb14.pth")
device = "cuda" if cuda_malloc_supported() else "cpu"
depth_guider = DepthGuider()
mask_processor = VaeImageProcessor(vae_scale_factor=1, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
def collage_region(low, high, mask):
mask = (np.array(mask) > 128).astype(np.uint8)
low = np.array(low).astype(np.uint8)
low = (low * 0).astype(np.uint8)
high = np.array(high).astype(np.uint8)
mask_3 = mask
collage = low * mask_3 + high * (1-mask_3)
collage = Image.fromarray(collage)
return collage
def pad_img_to_square(original_image, is_mask=False):
width, height = original_image.size
if height == width:
return original_image
if height > width:
padding = (height - width) // 2
new_size = (height, height)
else:
padding = (width - height) // 2
new_size = (width, width)
if is_mask:
new_image = Image.new("RGB", new_size, "black")
else:
new_image = Image.new("RGB", new_size, "white")
if height > width:
new_image.paste(original_image, (padding, 0))
else:
new_image.paste(original_image, (0, padding))
return new_image
def crop_padding_and_resize(ori_image, square_image):
ori_height, ori_width, _ = ori_image.shape
scale = max(ori_height / square_image.shape[0], ori_width / square_image.shape[1])
resized_square_image = cv2.resize(square_image, (int(square_image.shape[1] * scale), int(square_image.shape[0] * scale)))
padding_size = max(resized_square_image.shape[0] - ori_height, resized_square_image.shape[1] - ori_width)
if ori_height < ori_width:
top = padding_size // 2
bottom = resized_square_image.shape[0] - (padding_size - top)
cropped_image = resized_square_image[top:bottom, :,:]
else:
left = padding_size // 2
right = resized_square_image.shape[1] - (padding_size - left)
cropped_image = resized_square_image[:, left:right,:]
return cropped_image
def vis_mask(image, mask):
# mask 3 channle 255
mask = mask[:,:,0]
mask_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw outlines, using random colors
outline_opacity = 0.5
outline_thickness = 5
outline_color = np.concatenate([ [255,255,255], [outline_opacity] ])
white_mask = np.ones_like(image) * 255
mask_bin_3 = np.stack([mask,mask,mask],-1) > 128
alpha = 0.5
image = ( white_mask * alpha + image * (1-alpha) ) * mask_bin_3 + image * (1-mask_bin_3)
cv2.polylines(image, mask_contours, True, outline_color, outline_thickness, cv2.LINE_AA)
return image
mimicbrush_model = None
def infer_single(ref_image, target_image, target_mask, seed = -1, num_inference_steps=50, guidance_scale = 5, enable_shape_control = False):
#return ref_image
"""
mask: 0/1 1-channel np.array
image: rgb np.array
"""
global mimicbrush_model
if not mimicbrush_model:
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", in_channels=13, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(dtype=torch.float16)
pipe = MimicBrushPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
unet=unet,
feature_extractor=None,
safety_checker=None,
)
depth_anything_model.load_state_dict(torch.load(depth_model_path))
referencenet = ReferenceNet.from_pretrained(ref_model_path, subfolder="unet").to(dtype=torch.float16)
mimicbrush_model = MimicBrush_RefNet(pipe, image_encoder_path, mimicbrush_ckpt, depth_anything_model, depth_guider, referencenet, device)
ref_image = ref_image.astype(np.uint8)
target_image = target_image.astype(np.uint8)
target_mask = target_mask .astype(np.uint8)
ref_image = Image.fromarray(ref_image.astype(np.uint8))
ref_image = pad_img_to_square(ref_image)
target_image = pad_img_to_square(Image.fromarray(target_image))
target_image_low = target_image
target_mask = np.stack([target_mask,target_mask,target_mask],-1).astype(np.uint8) * 255
target_mask_np = target_mask.copy()
target_mask = Image.fromarray(target_mask)
target_mask = pad_img_to_square(target_mask, True)
target_image_ori = target_image.copy()
target_image = collage_region(target_image_low, target_image, target_mask)
depth_image = target_image_ori.copy()
depth_image = np.array(depth_image)
depth_image = transform({'image': depth_image})['image']
depth_image = torch.from_numpy(depth_image).unsqueeze(0) / 255
if not enable_shape_control:
depth_image = depth_image * 0
mask_pt = mask_processor.preprocess(target_mask, height=512, width=512)
pred, depth_pred = mimicbrush_model.generate(pil_image=ref_image, depth_image = depth_image, num_samples=1, num_inference_steps=num_inference_steps,
seed=seed, image=target_image, mask_image=mask_pt, strength=1.0, guidance_scale=guidance_scale)
depth_pred = F.interpolate(depth_pred, size=(512,512), mode = 'bilinear', align_corners=True)[0][0]
depth_pred = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
depth_pred = depth_pred.detach().cpu().numpy().astype(np.uint8)
depth_pred = cv2.applyColorMap(depth_pred, cv2.COLORMAP_INFERNO)[:,:,::-1]
pred = pred[0]
pred = np.array(pred).astype(np.uint8)
return pred, depth_pred.astype(np.uint8)
def inference_single_image(ref_image,
tar_image,
tar_mask,
ddim_steps,
scale,
seed,
enable_shape_control,
):
if seed == -1:
seed = np.random.randint(10000)
pred, depth_pred = infer_single(ref_image, tar_image, tar_mask, seed, num_inference_steps=ddim_steps, guidance_scale = scale, enable_shape_control = enable_shape_control)
return pred, depth_pred