-
Notifications
You must be signed in to change notification settings - Fork 34
/
demo.py
439 lines (359 loc) · 13.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import cPickle as pickle
import json
import os
import time
import sys
from scipy.ndimage import zoom
from scipy.ndimage.interpolation import rotate
from skimage import color
from breze.learn.data import one_hot
import matplotlib.pyplot as plt
import numpy as np
import h5py
import gnumpy
import climin.stops
from climin import mathadapt as ma
import ash
from model_defs import get_model
from conv3d.model import SequentialModel
def to_sections(im):
check = [i % 2 == 0 for i in im.shape]
if not all(check):
raise ValueError('All dimensions must be even numbers. Got: %s' % check)
size_x, size_y, size_z = im.shape
step_x = size_x / 2
step_y = size_y / 2
step_z = size_z / 2
sections = []
for z in range(2):
for y in range(2):
for x in range(2):
begin_x = step_x*x
begin_y = step_y*y
begin_z = step_z*z
end_x = begin_x + step_x
end_y = begin_y + step_y
end_z = begin_z + step_z
section = im[begin_x:end_x, begin_y:end_y, begin_z:end_z].copy()
sections.append(section)
return sections
def from_sections(sections, original_shape):
if len(sections) == 0:
raise ValueError('Section list is empty.')
im = np.zeros(original_shape, dtype=sections[0].dtype)
check = [i % 2 == 0 for i in im.shape]
if not all(check):
raise ValueError('All dimensions must be even numbers. Got: %s' % check)
size_x, size_y, size_z = im.shape
step_x = size_x / 2
step_y = size_y / 2
step_z = size_z / 2
count = 0
for z in range(2):
for y in range(2):
for x in range(2):
begin_x = step_x*x
begin_y = step_y*y
begin_z = step_z*z
end_x = begin_x + step_x
end_y = begin_y + step_y
end_z = begin_z + step_z
section = sections[count]
count += 1
im[begin_x:end_x, begin_y:end_y, begin_z:end_z] = section[:,:,:].copy()
return im
def dice_alt(seg, gt):
sim = float(np.sum(np.minimum(seg, gt)))
sim /= np.sum(np.maximum(seg, gt))
return sim
def dice_(seg, gt):
intersection = 2. * np.sum(seg * gt)
denominator = (np.sum(np.square(seg)) + np.sum(np.square(gt)))
if denominator == 0:
return 1.
similarity = intersection / denominator
return similarity
def dice(seg, gt):
seg_transposed = np.transpose(seg, (3, 0, 1, 2))
gt = np.transpose(gt, (3, 0, 1, 2))
dice_list = [dice_(s, g) for s, g in zip(seg_transposed, gt)]
return dice_list
def get_whole(map):
healthy = map[:, :, :, 0]
non_healthy = np.sum(map[:, :, :, 1:], axis=3)
result = np.zeros((map.shape[:3] + (2,)))
result[:, :, :, 0] = healthy
result[:, :, :, 1] = non_healthy
return result.argmax(axis=3)
def get_core(map):
core = map[:, :, :, 1] + np.sum(map[:, :, :, 3:], axis=3)
non_core = map[:, :, :, 0] + map[:, :, :, 2]
result = np.zeros((map.shape[:3] + (2,)))
result[:, :, :, 0] = non_core
result[:, :, :, 1] = core
return result.argmax(axis=3)
def get_active(map):
active = map[:, :, :, 3]
non_active = np.sum(map[:, :, :, :3], axis=3) + map[:, :, :, 4]
result = np.zeros((map.shape[:3] + (2,)))
result[:, :, :, 0] = non_active
result[:, :, :, 1] = active
return result.argmax(axis=3)
def brats_dice(seg, gt):
whole_seg = get_whole(seg)
whole_gt = get_whole(gt)
core_seg = get_core(seg)
core_gt = get_core(gt)
active_seg = get_active(seg)
active_gt = get_active(gt)
seg_and_gt = [(whole_seg, whole_gt), (core_seg, core_gt), (active_seg, active_gt)]
dice_list = [dice_(s, g) for s, g in seg_and_gt]
return dice_list
def discrete(seg, n_classes):
original_shape = seg.shape
discrete_seg = seg.argmax(axis=3)
discrete_seg = np.reshape(discrete_seg, (-1,))
discrete_seg = np.reshape(one_hot(discrete_seg, n_classes), original_shape)
return discrete_seg
def vis_col_result(im, seg, gt, savefile=None):
indices_0 = np.where(gt == 0)
indices_1 = np.where(gt == 1) # metacarpal
indices_2 = np.where(gt == 2) # proximal
indices_3 = np.where(gt == 3) # middle (thumb: distal)
indices_4 = np.where(gt == 4) # distal (thumb: none)
indices_s0 = np.where(seg == 0)
indices_s1 = np.where(seg == 1)
indices_s2 = np.where(seg == 2)
indices_s3 = np.where(seg == 3)
indices_s4 = np.where(seg == 4)
im = im * 1. / im.max()
rgb_image = color.gray2rgb(im)
m0 = [0.6, 0.6, 1.]
m1 = [0.2, 1., 0.2]
m2 = [1., 1., 0.2]
m3 = [1., 0.6, 0.2]
m4 = [1., 0., 0.]
im_gt = rgb_image.copy()
im_seg = rgb_image.copy()
im_gt[indices_0[0], indices_0[1], :] *= m0
im_gt[indices_1[0], indices_1[1], :] *= m1
im_gt[indices_2[0], indices_2[1], :] *= m2
im_gt[indices_3[0], indices_3[1], :] *= m3
im_gt[indices_4[0], indices_4[1], :] *= m4
im_seg[indices_s0[0], indices_s0[1], :] *= m0
im_seg[indices_s1[0], indices_s1[1], :] *= m1
im_seg[indices_s2[0], indices_s2[1], :] *= m2
im_seg[indices_s3[0], indices_s3[1], :] *= m3
im_seg[indices_s4[0], indices_s4[1], :] *= m4
fig = plt.figure()
a = fig.add_subplot(1, 2, 1)
plt.imshow(im_seg)
a.set_title('Segmentation')
a = fig.add_subplot(1, 2, 2)
plt.imshow(im_gt)
a.set_title('Ground truth')
if savefile is not None:
plt.savefig(savefile)
else:
plt.show()
plt.close()
def vis_result(image, seg, gt, title1='Segmentation', title2='Ground truth', savefile=None):
indices = np.where(seg >= 0.5)
indices_gt = np.where(gt >= 0.5)
im_norm = image / image.max()
rgb_image = color.gray2rgb(im_norm)
multiplier = [0., 1., 1.]
multiplier_gt = [1., 1., 0.]
im_seg = rgb_image.copy()
im_gt = rgb_image.copy()
im_seg[indices[0], indices[1], :] *= multiplier
im_gt[indices_gt[0], indices_gt[1], :] *= multiplier_gt
fig = plt.figure()
a = fig.add_subplot(1, 2, 1)
plt.imshow(im_seg)
a.set_title(title1)
a = fig.add_subplot(1, 2, 2)
plt.imshow(im_gt)
a.set_title(title2)
if savefile is None:
plt.show()
else:
plt.savefig(savefile)
plt.close()
def build_net(model_folder, model_code, n_classes, train_size, inpt_h, inpt_w, inpt_d, n_channels):
model_path = os.path.join('models', model_folder)
param_file = os.path.join(model_path, 'params.hdf5')
bn_par_file = os.path.join(model_path, 'bn_pars.pkl')
log = None
for f_name in os.listdir(model_path):
if f_name.endswith('.json') and not f_name.startswith('dice'):
with open(os.path.join(model_path, f_name), 'r') as f:
log = json.load(f)
break
if 'layers' not in log:
log = None
model_def = get_model(model_code)
layer_vars = model_def.layer_vars if log is None else log['layers']
batchnorm = model_def.batchnorm
loss_id = model_def.loss_id
out_transfer = model_def.out_transfer
batch_size = 1
max_passes = 1
inpt_dims = (inpt_h, inpt_w, inpt_d)
n_report = train_size / batch_size
max_iter = n_report * max_passes
optimizer = 'adam'
model = SequentialModel(
image_height=inpt_dims[0], image_width=inpt_dims[1],
image_depth=inpt_dims[2], n_channels=n_channels,
n_output=n_classes, layer_vars=layer_vars,
out_transfer=out_transfer, loss_id=loss_id,
optimizer=optimizer, batch_size=batch_size,
max_iter=max_iter, using_bn=batchnorm
)
f_params = h5py.File(param_file, 'r')
params = np.zeros(model.parameters.data.shape)
params[...] = f_params['best_pars']
f_params.close()
model.parameters.data[...] = params
if batchnorm and os.path.exists(bn_par_file):
with open(bn_par_file, 'r') as f:
bn_pars = pickle.load(f)
model.set_batchnorm_params(bn_pars)
else:
if batchnorm:
raise AssertionError('Batch norm used but running metrics not available.')
if batchnorm:
predict = ash.BatchNormFuns(
model=model,
fun=model.predict,
phase='infer'
)
else:
predict = model.predict
return predict
def get_data(data_name, x_only=False):
data_path = os.path.join('data', 'datasets', data_name+'.hdf5')
data = h5py.File(data_path, 'r')
test_x = data['test_x']
test_y = data['test_y'] if not x_only else None
return test_x, test_y
def compute_results(predict, X, Y):
for x, y in zip(X, Y):
depth, n_channels, height, width = x.shape
start = time.time()
model_output = predict(x[np.newaxis])
end = time.time()
n_classes = y.shape[-1]
model_output = model_output.as_numpy_array() if isinstance(model_output, gnumpy.garray) else model_output
seg = np.reshape(
model_output,
(height, width, depth, n_classes)
)
gt = np.reshape(y, (height, width, depth, n_classes))
seg = discrete(seg, n_classes)
dice_list = dice(seg, gt)
seg = seg.argmax(axis=3)
gt = gt.argmax(axis=3)
dice_all = dice_alt(seg, gt)
dice_list = [dice_all] + dice_list
print '\tdice: ', dice_list
print '\ttime taken: ', (end - start)
print '-' * 20
image = x[:, 0, :, :]
image = np.transpose(image, (1, 2, 0))
yield (image, seg, gt, dice_list)
class SeqPredict(object):
def __init__(self, predict, n_classes):
self.predict = predict
self.n_classes = n_classes
def __call__(self, x):
n_classes = self.n_classes
image = np.transpose(x[0], (1, 2, 3, 0))
sections = np.array([to_sections(modality) for modality in image], dtype='int16') # mod sect h w d
sections = np.transpose(sections, (1, 4, 0, 2, 3))
seg_sections = []
for section in sections:
depth, n_chans, height, width = section.shape
model_output = self.predict(section[np.newaxis])
model_output = model_output.as_numpy_array() if isinstance(model_output, gnumpy.garray) else model_output
seg = np.reshape(
model_output,
(height, width, depth, n_classes)
)
seg = seg.argmax(axis=3)
seg_sections.append(seg)
final_seg = from_sections(seg_sections, original_shape=(x.shape[3], x.shape[4], x.shape[1]))
seg_onehot = np.reshape(final_seg, (-1,))
seg_onehot = np.reshape(one_hot(seg_onehot, n_classes), (-1, n_classes))
return seg_onehot
def save_results(image, seg, gt, result_path):
slice_count = 0
for _slice in np.arange(0, image.shape[-1], 1):
im_slice = image[:, :, _slice]
gt_slice = gt[:, :, _slice]
seg_slice = seg[:, :, _slice]
save_file = os.path.join(result_path, 'slice' + str(slice_count) + '.png')
vis_col_result(im=im_slice, gt=gt_slice, seg=seg_slice, savefile=save_file)
slice_count += 1
def test():
model_folder = os.path.join('brats_fold0', 'session1_2')
model_code = 'fcn_rffc2'
data_name = 'brats2013_leaderboard_data'
save_path = os.path.join('results', 'as_hdf', 'brats2013_leaderboard_results.hdf5')
tx, _ = get_data(data_name, x_only=True)
print 'Saving results to: ', save_path
save_hdf5 = h5py.File(save_path, 'w')
seg_maps = save_hdf5.create_dataset(
'test_result', (tx.shape[0], tx.shape[3], tx.shape[4], tx.shape[1]), dtype='int8')
train_size, depth, n_chans, height, width = tx.shape
n_classes = 5
predict = build_net(model_folder, model_code,
n_classes=n_classes, train_size=train_size,
inpt_h=height, inpt_w=width, inpt_d=depth,
n_channels=n_chans)
index = 0
for test_image in tx:
model_output = predict(test_image[np.newaxis])
model_output = model_output.as_numpy_array() if isinstance(model_output, gnumpy.garray) else model_output
fuzzy_seg = np.reshape(
model_output,
(height, width, depth, n_classes)
)
seg = fuzzy_seg.argmax(axis=3)
seg_maps[index,:,:,:] = seg
index += 1
save_hdf5.close()
def demonstrate():
model_folder = os.path.join('brats_fold0', 'session1_2')
model_code = 'fcn_rffc4'
data_name = 'brats_fold0'
sectionalized = False
tx, ty = get_data(data_name)
train_size, depth, n_chans, height, width = tx.shape
n_classes = ty.shape[-1]
if sectionalized:
depth = depth / 2
height = height / 2
width = width / 2
predict = build_net(model_folder, model_code,
n_classes=n_classes, train_size=train_size,
inpt_h=height, inpt_w=width, inpt_d=depth,
n_channels=n_chans)
if sectionalized:
predict = SeqPredict(predict=predict, n_classes=n_classes)
count = 1
dice_lists = []
for image, seg, gt, dl in compute_results(predict, tx, ty):
dice_lists.append(dl)
result_path = os.path.join('results', model_folder, 'testim_'+str(count))
if not os.path.exists(result_path):
os.makedirs(result_path)
save_results(image, seg, gt, result_path)
count += 1
dice_matrix = np.array(dice_lists)
dice_means = np.mean(dice_matrix, axis=0)
print 'Mean dice values: ', dice_means
if __name__ == '__main__':
demonstrate()
#test()