-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreweight.py
235 lines (195 loc) · 10.7 KB
/
reweight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from dataset import *
from model import *
from utils import *
from evaluation import *
import argparse
from tqdm import tqdm
from torch import tensor
import warnings
warnings.filterwarnings('ignore')
import math
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
from torch.optim.lr_scheduler import ExponentialLR
class MLP(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP, self).__init__()
self.lin1 = Linear(input_dim, hidden_dim)
self.lin2 = Linear(hidden_dim, output_dim)
def reset_parameters(self):
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, h):
h = self.lin1(h)
h = self.lin2(h)
return h
def run(data, args):
pbar = tqdm(range(args.runs), unit='run')
criterion = nn.BCELoss()
acc, f1, auc_roc, parity, equality = np.zeros(args.runs), np.zeros(
args.runs), np.zeros(args.runs), np.zeros(args.runs), np.zeros(args.runs)
data = data.to(args.device)
discriminator = MLP_discriminator(args).to(args.device)
optimizer_d = torch.optim.Adam([
dict(params=discriminator.lin.parameters(), weight_decay=args.d_wd)], lr=args.d_lr)
classifier = MLP_classifier(args).to(args.device)
optimizer_c = torch.optim.Adam([
dict(params=classifier.lin.parameters(), weight_decay=args.c_wd)], lr=args.c_lr)
if(args.encoder == 'MLP'):
encoder = MLP_encoder(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.lin.parameters(), weight_decay=args.e_wd)], lr=args.e_lr)
elif(args.encoder == 'GCN'):
if args.prop == 'scatter':
encoder = GCN_encoder_scatter(args).to(args.device)
else:
encoder = GCN_encoder_spmm(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.lin.parameters(), weight_decay=args.e_wd),
dict(params=encoder.bias, weight_decay=args.e_wd)], lr=args.e_lr)
elif(args.encoder == 'GIN'):
encoder = GIN_encoder(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.conv.parameters(), weight_decay=args.e_wd)], lr=args.e_lr)
elif(args.encoder == 'SAGE'):
encoder = SAGE_encoder(args).to(args.device)
optimizer_e = torch.optim.Adam([
dict(params=encoder.conv1.parameters(), weight_decay=args.e_wd),
dict(params=encoder.conv2.parameters(), weight_decay=args.e_wd)], lr=args.e_lr)
if os.path.isfile(args.dataset+'_hadj.pt'):
print('########## sample already done #############')
new_adj = torch.load(args.dataset+'_hadj.pt')
else:
data.adj = data.adj - sp.eye(data.adj.shape[0])
print('sample begin')
for i in tqdm(range(data.adj.shape[0])):
neighbor = torch.tensor(data.adj[i].nonzero()).to(args.device)
mask = (data.sens[neighbor[1]] != data.sens[i])
h_nei_idx = neighbor[1][mask]
new_adj[i, h_nei_idx] = 1
print('select done')
torch.save(new_adj, args.dataset+'_hadj.pt')
new_adj = new_adj.cpu()
new_adj_sp = new_adj.numpy()
new_adj_sp = sp.coo_matrix(new_adj)
new_adj_sp = sp.csr_matrix((new_adj_sp.data, (new_adj_sp.row, new_adj_sp.col)), shape=data.adj.shape)
data.adj = data.adj + sp.eye(data.adj.shape[0]) + args.delta * new_adj_sp
adj_norm = sys_normalized_adjacency(data.adj)
adj_norm_sp = sparse_mx_to_torch_sparse_tensor(adj_norm)
data.adj_norm_sp = adj_norm_sp
deg = np.sum(new_adj.numpy(), axis=1)
deg = torch.from_numpy(deg).cpu()
print('node avg degree:',data.edge_index.shape[1]/data.adj.shape[0],' heteroneighbor degree mean:',deg.float().mean(),' node without heteroneghbor:',(deg == 0).sum())
for count in pbar:
seed_everything(count + args.seed)
classifier.reset_parameters()
encoder.reset_parameters()
# model.reset_parameters()
best_val_tradeoff = 0
best_val_loss = math.inf
for epoch in range(0, args.epochs):
# train classifier
for epoch_c in range(0, args.c_epochs):
classifier.train()
encoder.train()
optimizer_c.zero_grad()
optimizer_e.zero_grad()
# h = encoder(data.x + model(data.x), data.edge_index, data.adj_norm_sp)
h = encoder(data.x, data.edge_index, data.adj_norm_sp)
output = classifier(h)
loss_c = F.binary_cross_entropy_with_logits(
output[data.train_mask], data.y[data.train_mask].unsqueeze(1).to(args.device))
loss_c.backward()
optimizer_e.step()
optimizer_c.step()
# evaluate classifier
accs, auc_rocs, F1s, tmp_parity, tmp_equality = evaluate(
data.x, classifier, discriminator, encoder, data, args)
print(epoch, 'Acc:', accs['test'], 'AUC_ROC:', auc_rocs['test'], 'F1:', F1s['test'],
'Parity:', tmp_parity['test'], 'Equality:', tmp_equality['test'],'tradeoff:',auc_rocs['val'] + F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val']))
# if auc_rocs['val'] + F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val']) > best_val_tradeoff:
# test_acc = accs['test']
# test_auc_roc = auc_rocs['test']
# test_f1 = F1s['test']
# test_parity, test_equality = tmp_parity['test'], tmp_equality['test']
# best_val_tradeoff = auc_rocs['val'] + F1s['val'] + \
# accs['val'] - (tmp_parity['val'] + tmp_equality['val'])
if auc_rocs['val'] + F1s['val'] + accs['val'] - args.alpha * (tmp_parity['val'] + tmp_equality['val']) > best_val_tradeoff:
test_acc = accs['test']
test_auc_roc = auc_rocs['test']
test_f1 = F1s['test']
test_parity, test_equality = tmp_parity['test'], tmp_equality['test']
print('best_val_tradeoff',epoch)
best_val_tradeoff = auc_rocs['val'] + F1s['val'] + \
accs['val'] - (tmp_parity['val'] + tmp_equality['val'])
# print('=====VALIDATION=====', epoch, epoch_g)
# print('Utility:', auc_rocs['val'] + F1s['val'] + accs['val'],
# 'Fairness:', tmp_parity['val'] + tmp_equality['val'])
# print('=====VALIDATION-BEST=====', epoch, epoch_g)
# print('Utility:', args.best_val_model_utility,
# 'Fairness:', args.best_val_fair)
# print('=====TEST=====', epoch)
# print('Acc:', test_acc, 'AUC_ROC:', test_auc_roc, 'F1:', test_f1,
# 'Parity:', test_parity, 'Equality:', test_equality)
# print('=====epoch:{}====='.format(epoch))
# print('sens_acc:', (((output.view(-1) > 0.5) & (data.x[:, args.sens_idx] == 1)).sum() + ((output.view(-1) < 0.5) &
# (data.x[:, args.sens_idx] == 0)).sum()).item() / len(data.y))
acc[count] = test_acc
f1[count] = test_f1
auc_roc[count] = test_auc_roc
parity[count] = test_parity
equality[count] = test_equality
# print('auc_roc:', np.mean(auc_roc[:(count + 1)]))
# print('f1:', np.mean(f1[:(count + 1)]))
# print('acc:', np.mean(acc[:(count + 1)]))
# print('Statistical parity:', np.mean(parity[:(count + 1)]))
# print('Equal Opportunity:', np.mean(equality[:(count + 1)]))
return acc, f1, auc_roc, parity, equality
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='german')
parser.add_argument('--runs', type=int, default=5)
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--d_epochs', type=int, default=5)
parser.add_argument('--c_epochs', type=int, default=5)
parser.add_argument('--d_lr', type=float, default=0.002)
parser.add_argument('--d_wd', type=float, default=0.0001)
parser.add_argument('--c_lr', type=float, default=0.01)
parser.add_argument('--c_wd', type=float, default=0.0001)
parser.add_argument('--e_lr', type=float, default=0.01)
parser.add_argument('--e_wd', type=float, default=0.0001)
parser.add_argument('--early_stopping', type=int, default=5)
parser.add_argument('--prop', type=str, default='scatter')
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--hidden', type=int, default=16)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--encoder', type=str, default='GIN')
parser.add_argument('--alpha', type=float, default=1)
parser.add_argument('--delta', type=float, default=1)
parser.add_argument('--m_epoch', type=int, default=100)
args = parser.parse_args()
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.init()
data, args.sens_idx, args.x_min, args.x_max = get_dataset(args.dataset)
args.num_features, args.num_classes = data.x.shape[1], 2-1 # binary classes are 0,1
# print((data.y == 1).sum(), (data.y == 0).sum())
# print((data.y[data.train_mask] == 1).sum(),
# (data.y[data.train_mask] == 0).sum())
# print((data.y[data.val_mask] == 1).sum(),
# (data.y[data.val_mask] == 0).sum())
# print((data.y[data.test_mask] == 1).sum(),
# (data.y[data.test_mask] == 0).sum())
args.train_ratio, args.val_ratio = torch.tensor([
(data.y[data.train_mask] == 0).sum(), (data.y[data.train_mask] == 1).sum()]), torch.tensor([
(data.y[data.val_mask] == 0).sum(), (data.y[data.val_mask] == 1).sum()])
args.train_ratio, args.val_ratio = torch.max(
args.train_ratio) / args.train_ratio, torch.max(args.val_ratio) / args.val_ratio
args.train_ratio, args.val_ratio = args.train_ratio[
data.y[data.train_mask].long()], args.val_ratio[data.y[data.val_mask].long()]
# print(args.val_ratio, data.y[data.val_mask])
acc, f1, auc_roc, parity, equality = run(data, args)
print('======' + args.dataset + args.encoder + '======')
print('auc_roc:', round(np.mean(auc_roc)* 100,2),'±',round(np.std(auc_roc) * 100,2), sep='')
print('Acc:', round(np.mean(acc) * 100,2), '±' ,round(np.std(acc) * 100,2), sep='')
print('f1:', round(np.mean(f1) * 100,2), '±' ,round(np.std(f1) * 100,2), sep='')
print('parity:', round(np.mean(parity) * 100,2), '±', round(np.std(parity) * 100,2), sep='')
print('equality:', round(np.mean(equality) * 100,2), '±', round(np.std(equality) * 100,2), sep='')