Skip to content

Latest commit

 

History

History
47 lines (37 loc) · 1.71 KB

README.md

File metadata and controls

47 lines (37 loc) · 1.71 KB

Deep Graph Infomax (DGI)

How to run

Run with following:

# use tensorflow backend
TL_BACKEND=paddle python dgi_trainer.py --dataset cora --lr 0.002 --patience 50
TL_BACKEND=paddle python dgi_trainer.py --dataset citeseer --lr 0.0005 --patience 20 --n_epoch 300
TL_BACKEND=paddle python dgi_trainer.py --dataset pubmed --lr 0.001 --hidden_dim 256 --patience 20 
# use paddle backend
TL_BACKEND=tensorflow python dgi_trainer.py --dataset cora --lr 0.003 --patience 50
TL_BACKEND=tensorflow python dgi_trainer.py --dataset citeseer --lr 0.001 --patience 20 --n_epoch 100
TL_BACKEND=tensorflow python dgi_trainer.py --dataset pubmed --hidden_dim 256 --lr 0.001
# use pytorch backend
TL_BACKEND=torch python dgi_trainer.py --dataset cora 
TL_BACKEND=torch python dgi_trainer.py --dataset citeseer
TL_BACKEND=torch python dgi_trainer.py --dataset pubmed --lr 0.001 --patience 20

Results

Dataset Cora Citeseer Pubmed
Author's Code 82.3 71.8 76.8
DGL 81.6 69.4 76.1
GammaGL(tf) 81.51 ± 0.55 69.01 ± 0.91 78.37 ± 0.37
GammaGL(th) --.- --.- 79.58 ± 0.52
GammaGL(pd) 81.19 ± 0.64 69.06 ± 0.50 78.58 ± 0.65
GammaGL(ms) --.- --.- --.-
  • The model performance is the average of 5 tests