- Paper link: https://arxiv.org/pdf/1908.01000
- Author's code repo (in Pytorch): https://github.com/fanyun-sun/InfoGraph
Run with following:
# use tensorflow bakcend
TL_BACKEND="tensorflow" python infograph_trainer.py --dataset MUTAG
TL_BACKEND="tensorflow" python infograph_trainer.py --dataset IMDB-BINARY
TL_BACKEND="tensorflow" python infograph_trainer.py --dataset REDDIT-BINARY
# use pytorch backend
TL_BACKEND="torch" python infograph_trainer.py --dataset MUTAG
TL_BACKEND="torch" python infograph_trainer.py --dataset IMDB-BINARY
TL_BACKEND="torch" python infograph_trainer.py --dataset REDDIT-BINARY
# use paddle backend
TL_BACKEND="paddle" python infograph_trainer.py --dataset MUTAG
TL_BACKEND="paddle" python infograph_trainer.py --dataset IMDB-BINARY
TL_BACKEND="paddle" python infograph_trainer.py --dataset REDDIT-BINARY
Dataset | MUTAG | IMDB-B | REDDIT-B |
---|---|---|---|
Author's Code | 89.0 | 73.0 | 82.5 |
DGL | 89.88 | 72.7 | 88.5 |
GammaGL(tf) | 89.2 ± 0.25 | 72.0 | 82.4 |
GammaGL(th) | 90.65 ± 0.2 | --.- | --.- |
GammaGL(pd) | 89.2 ± 0.53 | 72.13 ± 0.12 | 84.8 |
GammaGL(ms) | --.- | --.- | --.- |