-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathCompGCN.py
197 lines (167 loc) · 8 KB
/
CompGCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch as th
import torch.nn as nn
import dgl.nn as dglnn
import torch.nn.functional as F
from . import BaseModel, register_model
from openhgnn.layers.micro_layer import CompConv
from ..utils.dgl_graph import edata_in_out_mask
from ..utils import get_nodes_dict
from ..utils.utils import ccorr
@register_model('CompGCN')
class CompGCN(BaseModel):
"""
The models of the simplified CompGCN, without using basis vector, for a heterogeneous graph.
Here, we present the implementation details for each task used for evaluation in the paper.
For all the tasks, we used COMPGCN build on PyTorch geometric framework (Fey & Lenssen, 2019).
Link Prediction: For evaluation, 200-dimensional embeddings for node and relation embeddings are used.
For selecting the best model we perform a hyperparameter search using the validation data over the values listed in Table 8.
For training link prediction models, we use the standard binary cross entropy loss with label smoothing Dettmers et al. (2018).
Node Classification: Following Schlichtkrull et al. (2017), we use 10% training data as validation for selecting the best model for both the datasets.
We restrict the number of hidden units to 32. We use cross-entropy loss for training our model.
For all the experiments, training is done using Adam optimizer (Kingma & Ba, 2014) and Xavier initialization (Glorot & Bengio, 2010) is used for initializing parameters.
"""
@classmethod
def build_model_from_args(cls, args, hg):
return cls(args.hidden_dim, args.hidden_dim, args.out_dim,
hg.etypes,
get_nodes_dict(hg), len(hg.etypes),
args.num_layers, comp_fn=args.comp_fn, dropout=args.dropout
)
def __init__(self, in_dim, hid_dim, out_dim, etypes, n_nodes, n_rels, num_layers=2, comp_fn='sub', dropout=0.0,
activation=F.relu, batchnorm=True):
super(CompGCN, self).__init__()
self.in_dim = in_dim
self.hid_dim = hid_dim
self.out_dim = out_dim
self.rel_names = list(set(etypes))
self.rel_names.sort()
self.n_rels = n_rels
self.n_nodes = n_nodes
self.num_layer = num_layers
self.comp_fn = comp_fn
self.dropout = dropout
self.activation = activation
self.batchnorm = batchnorm
self.layers = nn.ModuleList()
self.r_embedding = nn.Parameter(th.FloatTensor(self.n_rels + 1, self.in_dim))
self.layers.append(CompGraphConvLayer(self.in_dim,
self.hid_dim,
self.rel_names,
comp_fn=self.comp_fn,
activation=self.activation,
batchnorm=self.batchnorm,
dropout=self.dropout))
# Hidden layers with n - 1 CompGraphConv layers
for i in range(self.num_layer - 2):
self.layers.append(CompGraphConvLayer(self.hid_dim,
self.hid_dim,
self.rel_names,
comp_fn=self.comp_fn,
activation=self.activation,
batchnorm=self.batchnorm,
dropout=self.dropout))
# Output layer with the output class
self.layers.append(CompGraphConvLayer(self.hid_dim,
self.out_dim,
self.rel_names,
comp_fn=self.comp_fn))
nn.init.xavier_uniform_(self.r_embedding)
def forward(self, hg, n_feats):
# For full graph training, directly use the graph
# Forward of n layers of CompGraphConv
r_feats = self.r_embedding
if hasattr(hg, 'ntypes'):
# full graph training
for layer in self.layers:
n_feats, r_feats = layer(hg, n_feats, r_feats)
else:
# mini-batch training
for layer, block in zip(self.layers, hg):
n_feats, r_feats = layer(block, n_feats, r_feats)
return n_feats
def preprocess(self, hg):
edata_in_out_mask(hg)
class CompGraphConvLayer(nn.Module):
"""One layer of simplified CompGCN."""
def __init__(self,
in_dim,
out_dim,
rel_names,
comp_fn='sub',
activation=None,
batchnorm=False,
dropout=0):
super(CompGraphConvLayer, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.comp_fn = comp_fn
self.actvation = activation
self.batchnorm = batchnorm
self.rel_names = rel_names
# define dropout layer
self.dropout = nn.Dropout(dropout)
# define batch norm layer
if self.batchnorm:
self.bn = nn.BatchNorm1d(out_dim)
# define weights of 3 node matrices
self.W_O = nn.Linear(self.in_dim, self.out_dim)
self.W_I = nn.Linear(self.in_dim, self.out_dim)
self.W_S = nn.Linear(self.in_dim, self.out_dim)
# define weights of the 1 relation matrix
self.W_R = nn.Linear(self.in_dim, self.out_dim)
self.conv = dglnn.HeteroGraphConv({
rel: CompConv(comp_fn=comp_fn,
norm='right',
_allow_zero_in_degree=True)
for rel in rel_names
})
def forward(self, hg, n_in_feats, r_feats):
"""
Compute one layer of composition transfer for one relation only in a
homogeneous graph with bidirectional edges.
"""
with hg.local_scope():
# Assign values to source nodes. In a homogeneous graph, this is equal to
# assigning them to all nodes.
# Assign feature to all edges with the same value, the r_feats.
wdict = {}
for i, etype in enumerate(self.rel_names):
if etype[:4] == 'rev-' or etype[-4:] == '-rev':
W = self.W_I
else:
W = self.W_O
wdict[etype] = {'Linear': W, 'h_e': r_feats[i + 1]}
if hg.is_block:
inputs_src = n_in_feats
inputs_dst = {k: v[:hg.number_of_dst_nodes(k)] for k, v in n_in_feats.items()}
outputs = self.conv(hg, (inputs_src, inputs_dst), mod_kwargs=wdict)
else:
inputs_src = inputs_dst = n_in_feats
outputs = self.conv(hg, inputs_src, mod_kwargs=wdict)
for n, emd in outputs.items():
# Step 4: add results of self-loop
if self.comp_fn == 'sub':
h_self = self.W_S(inputs_dst[n] - r_feats[-1])
elif self.comp_fn == 'mul':
h_self = self.W_S(inputs_dst[n] * r_feats[-1])
elif self.comp_fn == 'ccorr':
h_self = self.W_S(ccorr(inputs_dst[n], r_feats[-1]))
else:
raise Exception('Only supports sub, mul, and ccorr')
h_self.add_(emd)
# Compute relation output
# Use batch norm
if self.batchnorm:
if h_self.shape[0] > 1:
h_self = self.bn(h_self)
# Use drop out
n_out_feats = self.dropout(h_self)
# Use activation function
if self.actvation is not None:
n_out_feats = self.actvation(n_out_feats)
outputs[n] = n_out_feats
r_out_feats = self.W_R(r_feats)
r_out_feats = self.dropout(r_out_feats)
if self.actvation is not None:
r_out_feats = self.actvation(r_out_feats)
return outputs, r_out_feats