-
Notifications
You must be signed in to change notification settings - Fork 147
/
HeGAN.py
265 lines (209 loc) · 9.98 KB
/
HeGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
from collections import OrderedDict
import torch.nn as nn
from . import BaseModel, register_model
@register_model('HeGAN')
class HeGAN(BaseModel):
r"""
HeGAN was introduced in `Adversarial Learning on Heterogeneous Information Networks <https://dl.acm.org/doi/10.1145/3292500.3330970>`_
It included a **Discriminator** and a **Generator**. For more details please read docs of both.
Parameters
----------
emb_size: int
embedding size
hg: dgl.heteroGraph
hetorogeneous graph
"""
@classmethod
def build_model_from_args(cls, args, hg):
return cls(args.emb_size, hg)
def __init__(self, emb_size, hg):
super().__init__()
self.generator = Generator(emb_size, hg)
self.discriminator = Discriminator(emb_size, hg)
def forward(self, *args):
pass
# def predict(self, data):
# pass
def extra_loss(self):
pass
class Generator(nn.Module):
r"""
A Discriminator :math:`D` eveluates the connectivity between the pair of nodes :math:`u` and :math:`v` w.r.t. a relation :math:`r`. It is formulated as follow:
.. math::
D(\mathbf{e}_v|\mathbf{u},\mathbf{r};\mathbf{\theta}^D) = \frac{1}{1+\exp(-\mathbf{e}_u^{D^T}) \mathbf{M}_r^D \mathbf{e}_v}
where :math:`e_v \in \mathbb{R}^{d\times 1}` is the input embeddings of the sample :math:`v`,
:math:`e_u^D \in \mathbb{R}^{d \times 1}` is the learnable embedding of node :math:`u`,
:math:`M_r^D \in \mathbb{R}^{d \times d}` is a learnable relation matrix for relation :math:`r`.
There are also a two-layer MLP integrated into the generator for enhancing the expression of the fake samples:
.. math::
G(\mathbf{u}, \mathbf{r}; \mathbf{\theta}^G) = f(\mathbf{W_2}f(\mathbf{W}_1 \mathbf{e} + \mathbf{b}_1) + \mathbf{b}_2)
where :math:`e` is drawn from Gaussian distribution. :math:`\{W_i, b_i}` denote the weight matrix and bias vector for :math:`i`-th layer.
The discriminator Loss is :
.. math::
L_G = \mathbb{E}_{\langle u,v\rangle \sim P_G, e'_v \sim G(u,r;\theta^G)} = -\log -D(e'_v|u,r)) +\lambda^G || \theta^G ||_2^2
where :math:`\theta^G` denote all the learnable parameters in Generator.
Parameters
-----------
emb_size: int
embeddings size.
hg: dgl.heteroGraph
heterogenous graph.
"""
def __init__(self, emb_size, hg):
super().__init__()
self.n_relation = len(hg.etypes)
self.node_emb_dim = emb_size
self.nodes_embedding = nn.ParameterDict()
for nodes_type, nodes_emb in hg.ndata['h'].items():
self.nodes_embedding[nodes_type] = nn.Parameter(nodes_emb, requires_grad=True)
self.relation_matrix = nn.ParameterDict()
for et in hg.etypes:
rm = torch.empty(self.node_emb_dim, self.node_emb_dim)
rm = nn.init.xavier_normal_(rm)
self.relation_matrix[et] = nn.Parameter(rm, requires_grad=True)
self.fc = nn.Sequential(
OrderedDict([
("w_1", nn.Linear(in_features=self.node_emb_dim, out_features=self.node_emb_dim, bias=True)),
("a_1", nn.LeakyReLU()),
("w_2", nn.Linear(in_features=self.node_emb_dim, out_features=self.node_emb_dim)),
("a_2", nn.LeakyReLU())
])
)
def forward(self, gen_hg, dis_node_emb, dis_relation_matrix, noise_emb):
r"""
Parameters
-----------
gen_hg: dgl.heterograph
sampled graph for generator.
dis_node_emb: dict[str: Tensor]
discriminator node embedding.
dis_relation_matrix: dict[str: Tensor]
discriminator relation embedding.
noise_emb: dict[str: Tensor]
noise embedding.
"""
score_list = []
with gen_hg.local_scope():
self.assign_node_data(gen_hg, dis_node_emb)
self.assign_edge_data(gen_hg, dis_relation_matrix)
self.generate_neighbor_emb(gen_hg, noise_emb)
for et in gen_hg.canonical_etypes:
gen_hg.apply_edges(lambda edges: {'s': edges.src['dh'].unsqueeze(1).matmul(edges.data['de']).squeeze()}, etype=et)
gen_hg.apply_edges(lambda edges: {'score': edges.data['s'].multiply(edges.data['g'])}, etype=et)
score = torch.sum(gen_hg.edata['score'].pop(et), dim=1)
score_list.append(score)
return torch.cat(score_list)
def get_parameters(self):
return {k: self.nodes_embedding[k] for k in self.nodes_embedding.keys()}
def generate_neighbor_emb(self, hg, noise_emb):
for et in hg.canonical_etypes:
hg.apply_edges(lambda edges: {'g': edges.src['h'].unsqueeze(1).matmul(edges.data['e']).squeeze()}, etype=et)
hg.apply_edges(lambda edges: {'g': edges.data['g']+noise_emb[et]}, etype=et)
hg.apply_edges(lambda edges: {'g': self.fc(edges.data['g'])}, etype=et)
return {et: hg.edata['g'][et] for et in hg.canonical_etypes}
def assign_edge_data(self, hg, dis_relation_matrix=None):
for et in hg.canonical_etypes:
n = hg.num_edges(et)
e = self.relation_matrix[et[1]]
hg.edata['e'] = {et: e.expand(n, -1, -1)}
if dis_relation_matrix:
de = dis_relation_matrix[et[1]]
hg.edata['de'] = {et: de.expand(n, -1, -1)}
def assign_node_data(self, hg, dis_node_emb=None):
for nt in hg.ntypes:
hg.nodes[nt].data['h'] = self.nodes_embedding[nt]
if dis_node_emb:
hg.ndata['dh'] = dis_node_emb
class Discriminator(nn.Module):
r"""
A generator :math:`G` samples fake node embeddings from a continuous distribution. The distribution is Gaussian distribution:
.. math::
\mathcal{N}(\mathbf{e}_u^{G^T} \mathbf{M}_r^G, \mathbf{\sigma}^2 \mathbf{I})
where :math:`e_u^G \in \mathbb{R}^{d \times 1}` and :math:`M_r^G \in \mathbb{R}^{d \times d}` denote the node embedding of :math:`u \in \mathcal{V}` and the relation matrix of :math:`r \in \mathcal{R}` for the generator.
There are also a two-layer MLP integrated into the generator for enhancing the expression of the fake samples:
.. math::
G(\mathbf{u}, \mathbf{r}; \mathbf{\theta}^G) = f(\mathbf{W_2}f(\mathbf{W}_1 \mathbf{e} + \mathbf{b}_1) + \mathbf{b}_2)
where :math:`e` is drawn from Gaussian distribution. :math:`\{W_i, b_i}` denote the weight matrix and bias vector for :math:`i`-th layer.
The discriminator Loss is:
.. math::
L_1^D = \mathbb{E}_{\langle u,v,r\rangle \sim P_G} = -\log D(e_v^u|u,r))
L_2^D = \mathbb{E}_{\langle u,v\rangle \sim P_G, r' \sim P_{R'}} = -\log (1-D(e_v^u|u,r')))
L_3^D = \mathbb{E}_{\langle u,v\rangle \sim P_G, e'_v \sim G(u,r;\theta^G)} = -\log (1-D(e_v'|u,r)))
L_G = L_1^D + L_2^D + L_2^D + \lambda^D || \theta^D ||_2^2
where :math:`\theta^D` denote all the learnable parameters in Discriminator.
Parameters
-----------
emb_size: int
embeddings size.
hg: dgl.heteroGraph
heterogenous graph.
"""
def __init__(self, emb_size, hg):
super().__init__()
self.n_relation = len(hg.etypes)
self.node_emb_dim = emb_size
self.nodes_embedding = nn.ParameterDict()
for nodes_type, nodes_emb in hg.ndata['h'].items():
self.nodes_embedding[nodes_type] = nn.Parameter(nodes_emb, requires_grad=True)
self.relation_matrix = nn.ParameterDict()
for et in hg.etypes:
rm = torch.empty(self.node_emb_dim, self.node_emb_dim)
rm = nn.init.xavier_normal_(rm)
self.relation_matrix[et] = nn.Parameter(rm, requires_grad=True)
def forward(self, pos_hg, neg_hg1, neg_hg2, generate_neighbor_emb):
r"""
Parameters
----------
pos_hg:
sampled postive graph.
neg_hg1:
sampled negative graph with wrong relation.
neg_hg2:
sampled negative graph wtih wrong node.
generate_neighbor_emb:
generator node embeddings.
"""
self.assign_node_data(pos_hg)
self.assign_node_data(neg_hg1)
self.assign_node_data(neg_hg2, generate_neighbor_emb)
self.assign_edge_data(pos_hg)
self.assign_edge_data(neg_hg1)
self.assign_edge_data(neg_hg2)
pos_score = self.score_pred(pos_hg)
neg_score1 = self.score_pred(neg_hg1)
neg_score2 = self.score_pred(neg_hg2)
return pos_score, neg_score1, neg_score2
def get_parameters(self):
r"""
return discriminator node embeddings and relation embeddings.
"""
return {k: self.nodes_embedding[k] for k in self.nodes_embedding.keys()}, \
{k: self.relation_matrix[k] for k in self.relation_matrix.keys()}
def score_pred(self, hg):
r"""
predict the discriminator score for sampled heterogeneous graph.
"""
score_list = []
with hg.local_scope():
for et in hg.canonical_etypes:
hg.apply_edges(lambda edges: {'s': edges.src['h'].unsqueeze(1).matmul(edges.data['e']).reshape(hg.num_edges(et), 64)}, etype=et)
if len(hg.edata['f']) == 0:
hg.apply_edges(lambda edges: {'score': edges.data['s'].multiply(edges.dst['h'])}, etype=et)
else:
hg.apply_edges(lambda edges: {'score': edges.data['s'].multiply(edges.data['f'])}, etype=et)
score = torch.sum(hg.edata['score'].pop(et), dim=1)
score_list.append(score)
return torch.cat(score_list)
def assign_edge_data(self, hg):
d = {}
for et in hg.canonical_etypes:
e = self.relation_matrix[et[1]]
n = hg.num_edges(et)
d[et] = e.expand(n, -1, -1)
hg.edata['e'] = d
def assign_node_data(self, hg, generate_neighbor_emb=None):
for nt in hg.ntypes:
hg.nodes[nt].data['h'] = self.nodes_embedding[nt]
if generate_neighbor_emb:
hg.edata['f'] = generate_neighbor_emb