-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathHetGNN.py
333 lines (281 loc) · 11.1 KB
/
HetGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import dgl
import torch as th
import torch.nn as nn
import dgl.function as fn
import torch.nn.functional as F
from . import BaseModel, register_model
@register_model('HetGNN')
class HetGNN(BaseModel):
r"""
HetGNN[KDD2019]-
`Heterogeneous Graph Neural Network <https://dl.acm.org/doi/abs/10.1145/3292500.3330961>`_
`Source Code Link <https://github.com/chuxuzhang/KDD2019_HetGNN>`_
The author of the paper only gives the academic dataset.
Attributes
-----------
Het_Aggrate : nn.Module
Het_Aggregate
"""
@classmethod
def build_model_from_args(cls, args, hg):
return cls(hg, args)
def __init__(self, hg, args):
super(HetGNN, self).__init__()
self.Het_Aggregate = Het_Aggregate(hg.ntypes, args.dim)
self.ntypes = hg.ntypes
self.device = args.device
self.loss_fn = HetGNN.compute_loss
def forward(self, hg, h=None):
if h is None:
h = self.extract_feature(hg, self.ntypes)
x = self.Het_Aggregate(hg, h)
return x
def evaluator(self):
self.link_preddiction()
self.node_classification()
def get_embedding(self):
input_features = self.model.extract_feature(self.hg, self.hg.ntypes)
x = self.model(self.model.preprocess(self.hg, self.args).to(self.args.device), input_features)
return x
def link_preddiction(self):
x = self.get_embedding()
self.model.lp_evaluator(x[self.category].to('cpu').detach(), self.train_batch, self.test_batch)
def node_classification(self):
x = self.get_embedding()
self.model.nc_evaluator(x[self.category].to('cpu').detach(), self.labels, self.train_idx, self.test_idx)
@staticmethod
def compute_loss(pos_score, neg_score):
# an example hinge loss
loss = []
for i in pos_score:
loss.append(F.logsigmoid(pos_score[i]))
loss.append(F.logsigmoid(-neg_score[i]))
loss = th.cat(loss)
return -loss.mean()
@staticmethod
def extract_feature(g, ntypes):
input_features = {}
for n in ntypes:
ndata = g.srcnodes[n].data
data = {}
data['dw_embedding'] = ndata['dw_embedding']
data['abstract'] = ndata['abstract']
if n == 'paper':
data['title'] = ndata['title']
data['venue'] = ndata['venue']
data['author'] = ndata['author']
data['reference'] = ndata['reference']
input_features[n] = data
return input_features
@staticmethod
def pred(edge_subgraph, x):
with edge_subgraph.local_scope():
edge_subgraph.ndata['x'] = x
for etype in edge_subgraph.canonical_etypes:
edge_subgraph.apply_edges(
dgl.function.u_dot_v('x', 'x', 'score'), etype=etype)
return edge_subgraph.edata['score']
class ScorePredictor(nn.Module):
def forward(self, edge_subgraph, x):
with edge_subgraph.local_scope():
edge_subgraph.ndata['x'] = x
for etype in edge_subgraph.canonical_etypes:
edge_subgraph.apply_edges(
dgl.function.u_dot_v('x', 'x', 'score'), etype=etype)
return edge_subgraph.edata['score']
class Het_Aggregate(nn.Module):
r"""
The whole model of HetGNN
Attributes
-----------
content_rnn : nn.Module
het_content_encoder
neigh_rnn : nn.Module
aggregate_het_neigh
atten_w : nn.ModuleDict[str, nn.Module]
"""
def __init__(self, ntypes, dim):
super(Het_Aggregate, self).__init__()
# ntypes means nodes type name
self.ntypes =ntypes
self.dim = dim
self.content_rnn = het_content_encoder(dim)
self.neigh_rnn = aggregate_het_neigh(ntypes, dim)
self.atten_w = nn.ModuleDict({})
for n in self.ntypes:
self.atten_w[n] = nn.Linear(in_features=dim * 2, out_features=1)
self.softmax = nn.Softmax(dim=1)
self.activation = nn.LeakyReLU()
self.drop = nn.Dropout(p=0.5)
self.bn = nn.BatchNorm1d(dim)
self.embed_d = dim
def forward(self, hg, h_dict):
with hg.local_scope():
content_h = {}
for ntype, h in h_dict.items():
content_h[ntype] = self.content_rnn(h)
neigh_h = self.neigh_rnn(hg, content_h)
# the content feature of the dst nodes
dst_h = {k: v[:hg.number_of_dst_nodes(k)] for k, v in content_h.items()}
out_h = {}
for n in self.ntypes:
d_h = dst_h[n]
batch_size = d_h.shape[0]
concat_h = []
concat_emd = []
for i in range(len(neigh_h[n])):
concat_h.append(th.cat((d_h, neigh_h[n][i]), 1))
concat_emd.append(neigh_h[n][i])
concat_h.append(th.cat((d_h, d_h), 1))
concat_emd.append(d_h)
concat_h = th.hstack(concat_h).view(batch_size * (len(self.ntypes) + 1), self.dim *2)
atten_w = self.activation(self.atten_w[n](concat_h)).view(batch_size, len(self.ntypes) + 1)
atten_w = self.softmax(atten_w).view(batch_size, 1, 4)
# weighted combination
concat_emd = th.hstack(concat_emd).view(batch_size, len(self.ntypes) + 1, self.dim)
weight_agg_batch = th.bmm(atten_w, concat_emd).view(batch_size, self.dim)
out_h[n] = weight_agg_batch
return out_h
class het_content_encoder(nn.Module):
r"""
The Encoding Heterogeneous Contents(C2) in the paper
For a specific node type, encoder different content features with a LSTM.
In paper, it is (b) NN-1: node heterogeneous contents encoder in figure 2.
Parameters
------------
dim : int
input dimension
Attributes
------------
content_rnn : nn.Module
nn.LSTM encode different content feature
"""
def __init__(self, dim):
super(het_content_encoder, self).__init__()
self.content_rnn = nn.LSTM(dim, int(dim / 2), 1, batch_first=True, bidirectional=True)
self.content_rnn.flatten_parameters()
self.dim = dim
def forward(self, h_dict):
r"""
Parameters
----------
h_dict: dict[str, th.Tensor]
key means different content feature
Returns
-------
content_h : th.tensor
"""
concate_embed = []
for _, h in h_dict.items():
concate_embed.append(h)
concate_embed = th.cat(concate_embed, 1)
concate_embed = concate_embed.view(concate_embed.shape[0], -1, self.dim)
all_state, last_state = self.content_rnn(concate_embed)
out_h = th.mean(all_state, 1).squeeze()
return out_h
class aggregate_het_neigh(nn.Module):
r"""
It is a Aggregating Heterogeneous Neighbors(C3)
Same Type Neighbors Aggregation
"""
def __init__(self, ntypes, dim):
super(aggregate_het_neigh, self).__init__()
self.neigh_rnn = nn.ModuleDict({})
self.ntypes =ntypes
for n in ntypes:
self.neigh_rnn[n] = lstm_aggr(dim)
def forward(self, hg, inputs):
with hg.local_scope():
outputs = {}
for i in self.ntypes:
outputs[i] = []
if isinstance(inputs, tuple) or hg.is_block:
if isinstance(inputs, tuple):
src_inputs, dst_inputs = inputs
else:
src_inputs = inputs
dst_inputs = {k: v[:hg.number_of_dst_nodes(k)] for k, v in inputs.items()}
for stype, etype, dtype in hg.canonical_etypes:
rel_graph = hg[stype, etype, dtype]
if rel_graph.number_of_edges() == 0:
continue
if stype not in src_inputs or dtype not in dst_inputs:
continue
dstdata = self.neigh_rnn[stype](
rel_graph,
(src_inputs[stype], dst_inputs[dtype]))
outputs[dtype].append(dstdata)
else:
for stype, etype, dtype in hg.canonical_etypes:
rel_graph = hg[stype, etype, dtype]
if rel_graph.number_of_edges() == 0:
continue
if stype not in inputs:
continue
dstdata = self.neigh_rnn[stype](
rel_graph,
inputs[stype])
outputs[dtype].append(dstdata)
return outputs
class lstm_aggr(nn.Module):
r"""
Aggregate the same neighbors with LSTM
"""
def __init__(self, dim):
super(lstm_aggr, self).__init__()
self.lstm = nn.LSTM(dim, int(dim / 2), 1, batch_first=True, bidirectional=True)
self.lstm.flatten_parameters()
def _lstm_reducer(self, nodes):
m = nodes.mailbox['m'] # (B, L, D)
batch_size = m.shape[0]
all_state, last_state = self.lstm(m)
return {'neigh': th.mean(all_state, 1)}
def forward(self, g, inputs):
with g.local_scope():
if isinstance(inputs, tuple) or g.is_block:
if isinstance(inputs, tuple):
src_inputs, dst_inputs = inputs
else:
src_inputs = inputs
dst_inputs = {k: v[:g.number_of_dst_nodes(k)] for k, v in inputs.items()}
g.srcdata['h'] = src_inputs
g.update_all(fn.copy_u('h', 'm'), self._lstm_reducer)
h_neigh = g.dstdata['neigh']
else:
g.srcdata['h'] = inputs
g.update_all(fn.copy_u('h', 'm'), self._lstm_reducer)
h_neigh = g.dstdata['neigh']
return h_neigh
# from openhgnn.models.micro_layer.LSTM_conv import LSTMConv
# from openhgnn.models.HeteroGraphConv import HeteroGraphConv
# class HetGNNConv(nn.Module):
# def __init__(self, graph, ntypes, dim):
# super(HetGNNConv, self).__init__()
# # ntypes means nodes type name
# self.ntypes =ntypes
# self.dim = dim
#
# # hetero conv modules
# self.micro_conv = HeteroGraphConv({
# etype: LSTMConv(dim=dim)
# for srctype, etype, dsttype in graph.canonical_etypes
# })
#
# # different types aggregation module
# self.macro_conv = AttConv(in_feats=hidden_dim * n_heads, out_feats=hidden_dim,
# num_heads=n_heads,
# dropout=dropout, negative_slope=0.2)
#
# self.atten_w = nn.ModuleDict({})
# for n in self.ntypes:
# self.atten_w[n] = nn.Linear(in_features=dim * 2, out_features=1)
#
# self.softmax = nn.Softmax(dim=1)
# self.activation = nn.LeakyReLU()
# self.drop = nn.Dropout(p=0.5)
# self.bn = nn.BatchNorm1d(dim)
# self.embed_d = dim
#
# def forward(self, hg, h):
# x = self.Het_Aggrate(hg, h)
# return x