-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathHetSANN.py
312 lines (259 loc) · 9.63 KB
/
HetSANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import dgl
import torch
import torch.nn as nn
import dgl.function as Fn
import torch.nn.functional as F
from dgl.ops import edge_softmax
from dgl.nn.pytorch import TypedLinear
from ..utils import to_hetero_feat
from . import BaseModel, register_model
@register_model('HetSANN')
class HetSANN(BaseModel):
r"""
This is a model HetSANN from `An Attention-Based Graph Neural Network for Heterogeneous Structural Learning
<https://arxiv.org/abs/1912.10832>`__
It contains the following part:
Apply a linear transformation:
.. math::
h^{(l+1, m)}_{\phi(j),i} = W^{(l+1, m)}_{\phi(j),\phi(i)} h^{(l)}_i \quad (1)
And return the new embeddings.
You may refer to the paper HetSANN-Section 2.1-Type-aware Attention Layer-(1)
Aggregation of Neighborhood:
Computing the attention coefficient:
.. math::
o^{(l+1,m)}_e = \sigma(f^{(l+1,m)}_r(h^{(l+1, m)}_{\phi(j),j}, h^{(l+1, m)}_{\phi(j),i})) \quad (2)
.. math::
f^{(l+1,m)}_r(e) = [h^{(l+1, m)^T}_{\phi(j),j}||h^{(l+1, m)^T}_{\phi(j),i}]a^{(l+1, m)}_r ] \quad (3)
.. math::
\alpha^{(l+1,m)}_e = exp(o^{(l+1,m)}_e) / \sum_{k\in \varepsilon_j} exp(o^{(l+1,m)}_k) \quad (4)
Getting new embeddings with multi-head and residual
.. math::
h^{(l + 1, m)}_j = \sigma(\sum_{e = (i,j,r)\in \varepsilon_j} \alpha^{(l+1,m)}_e h^{(l+1, m)}_{\phi(j),i}) \quad (5)
Multi-heads:
.. math::
h^{(l+1)}_j = \parallel^M_{m = 1}h^{(l + 1, m)}_j \quad (6)
Residual:
.. math::
h^{(l+1)}_j = h^{(l)}_j + \parallel^M_{m = 1}h^{(l + 1, m)}_j \quad (7)
Parameters
----------
num_heads: int
the number of heads in the attention computing
num_layers: int
the number of layers we used in the computing
in_dim: int
the input dimension
num_classes: int
the number of the output classes
num_etypes: int
the number of the edge types
dropout: float
the dropout rate
negative_slope: float
the negative slope used in the LeakyReLU
residual: boolean
if we need the residual operation
ntype: list
the list of node type
"""
@classmethod
def build_model_from_args(cls, args, hg):
return cls(
args.num_heads,
args.num_layers,
args.hidden_dim,
args.out_dim,
hg.ntypes,
len(hg.etypes),
args.dropout,
args.slope,
args.residual,
)
def __init__(self, num_heads, num_layers, in_dim, num_classes,
ntypes, num_etypes, dropout, negative_slope, residual):
super(HetSANN, self).__init__()
self.num_layers = num_layers
self.ntypes = ntypes
# self.dropout = nn.Dropout(dropout)
self.residual = residual
self.activation = F.elu
self.het_layers = nn.ModuleList()
# input projection
self.het_layers.append(
HetSANNConv(
num_heads,
in_dim,
in_dim // num_heads,
num_etypes,
dropout,
negative_slope,
False,
self.activation,
)
)
# hidden layer
for i in range(1, num_layers - 1):
self.het_layers.append(
HetSANNConv(
num_heads,
in_dim,
in_dim // num_heads,
num_etypes,
dropout,
negative_slope,
residual,
self.activation
)
)
# output projection
self.het_layers.append(
HetSANNConv(
1,
in_dim,
num_classes,
num_etypes,
dropout,
negative_slope,
residual,
None,
)
)
def forward(self, hg, h_dict):
"""
The forward part of the HetSANN.
Parameters
----------
hg : object
the dgl heterogeneous graph
h_dict: dict
the feature dict of different node types
Returns
-------
dict
The embeddings after the output projection.
"""
if hasattr(hg, 'ntypes'):
with hg.local_scope():
# input layer and hidden layers
hg.ndata['h'] = h_dict
g = dgl.to_homogeneous(hg, ndata = 'h')
h = g.ndata['h']
for i in range(self.num_layers - 1):
h = self.het_layers[i](g, h, g.ndata['_TYPE'], g.edata['_TYPE'], True)
# output layer
h = self.het_layers[-1](g, h, g.ndata['_TYPE'], g.edata['_TYPE'], True)
h_dict = to_hetero_feat(h, g.ndata['_TYPE'], self.ntypes)
else:
# for minibatch training, input h_dict is a tensor
h = h_dict
for layer, block in zip(self.het_layers, hg):
h = layer(block, h, block.ndata['_TYPE']['_N'], block.edata['_TYPE'], presorted=False)
h_dict = to_hetero_feat(h, block.ndata['_TYPE']['_N'][:block.num_dst_nodes()], self.ntypes)
return h_dict
@property
def to_homo_flag(self):
return True
class HetSANNConv(nn.Module):
"""
The HetSANN convolution layer.
Parameters
----------
num_heads: int
the number of heads in the attention computing
in_dim: int
the input dimension of the features
hidden_dim: int
the hidden dimension of the features
num_etypes: int
the number of the edge types
dropout: float
the dropout rate
negative_slope: float
the negative slope used in the LeakyReLU
residual: boolean
if we need the residual operation
activation: str
the activation function
"""
def __init__(self, num_heads, in_dim, hidden_dim, num_etypes,
dropout, negative_slope, residual, activation):
super(HetSANNConv, self).__init__()
self.num_heads = num_heads
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.W = TypedLinear(self.in_dim, self.hidden_dim * self.num_heads, num_etypes)
# self.W_out = TypedLinear(hidden_dim * num_heads, num_classes, num_etypes)
# self.W_hidden = nn.ModuleDict()
# self.W_out = nn.ModuleDict()
# for etype in etypes:
# self.W_hidden[etype] = nn.Linear(in_dim, hidden_dim * num_heads)
# for etype in etypes:
# self.W_out[etype] = nn.Linear(hidden_dim * num_heads, num_classes)
self.a_l = TypedLinear(self.hidden_dim * self.num_heads, self.hidden_dim * self.num_heads, num_etypes)
self.a_r = TypedLinear(self.hidden_dim * self.num_heads, self.hidden_dim * self.num_heads, num_etypes)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(negative_slope)
if residual:
self.residual = nn.Linear(in_dim, self.hidden_dim * num_heads)
else:
self.register_buffer("residual", None)
self.activation = activation
def forward(self, g, x, ntype, etype, presorted = False):
"""
The forward part of the HetSANNConv.
Parameters
----------
g : object
the dgl homogeneous graph
x: tensor
the original features of the graph
ntype: tensor
the node type of the graph
etype: tensor
the edge type of the graph
presorted: boolean
if the ntype and etype are preordered, default: ``False``
Returns
-------
tensor
The embeddings after aggregation.
"""
# formula (1)
g.srcdata['h'] = x
g.apply_edges(Fn.copy_u('h', 'm'))
h = g.edata['m']
feat = self.W(h, etype, presorted)
h = self.dropout(feat)
g.edata['m'] = h
h = h.view(-1, self.num_heads, self.hidden_dim)
# formula (2) (3) (4)
h_l = self.a_l(h.view(-1, self.num_heads * self.hidden_dim), etype, presorted) \
.view(-1, self.num_heads, self.hidden_dim).sum(dim = -1)
h_r = self.a_r(h.view(-1, self.num_heads * self.hidden_dim), etype, presorted) \
.view(-1, self.num_heads, self.hidden_dim).sum(dim = -1)
attention = self.leakyrelu(h_l + h_r)
attention = edge_softmax(g, attention)
# formula (5) (6)
with g.local_scope():
h = h.permute(0, 2, 1).contiguous()
g.edata['alpha'] = h @ attention.reshape(-1, self.num_heads, 1)
g.update_all(Fn.copy_e('m', 'w'),Fn.sum('w', 'emb'))
h_output = g.dstdata['emb']
# h_prime = []
# h = h.permute(1, 0, 2).contiguous()
# for i in range(self.num_heads):
# g.edata['alpha'] = attention[:, i]
# g.srcdata.update({'emb': h[i]})
# g.update_all(Fn.u_mul_e('emb', 'alpha', 'm'),
# Fn.sum('m', 'emb'))
# h_prime.append(g.ndata['emb'])
# h_output = torch.cat(h_prime, dim=1)
# formula (7)
if g.is_block:
x = x[:g.num_dst_nodes()]
if self.residual:
res = self.residual(x)
h_output += res
if self.activation is not None:
h_output = self.activation(h_output)
return h_output