-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathMeiREC.py
436 lines (377 loc) · 17.8 KB
/
MeiREC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
import torch.nn as nn
from torch.autograd import Variable
from . import BaseModel, register_model
import torch.nn.functional as F
@register_model('MeiREC')
class MeiREC(BaseModel):
r"""
MeiREC from paper `Metapath-guided Heterogeneous Graph Neural Network for
Intent Recommendation <https://dl.acm.org/doi/abs/10.1145/3292500.3330673>`__
in KDD_2019.
`Code from author <https://github.com/googlebaba/KDD2019-MEIRec>`__.
We leverage metapaths to obtain different-step neighbors of an object, and the embeddings of us
ers and queries are the aggregation of their neighbors under different metapaths.And we propose
to represent the queries and items with a small number of term embeddings.we need to learn the
term embeddings, rather than all object embeddings. This method is able to significantly reduc
e the number of parameters.
Parameters
----------
user_seq_length : int
Number for process dataset.
...
batch_num : int
Number of batch.
weight_decay : float
Number of weight_decay.
lr : float
learning rate.
train_epochs : int
Number of train epoch.
-----------
"""
@classmethod
def build_model_from_args(cls, config):
return cls(config)
def __init__(self, config):
super().__init__()
self.model = Model(config)
def forward(self, *args):
return self.model(*args)
def extra_loss(self):
pass
class Model(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
# model params
self.user_seq_length = 15
self.user_item_term_length = 10
self.user_query_term_length = 10
self.query_length = 10
self.query_topcate_length = 3
self.query_leafcate_length = 3
self.embed_size_word = 64
self._generate_model_layer()
# drop out prob
self.keep_prob = 0.8
def set_mode(self, mode="train"):
self.keep_prob = 0.8 if mode == "train" else 1.0
def _generate_model_layer(self):
self._word_embed = nn.Parameter(
Variable(
torch.Tensor(self.args.vocab,
self.embed_size_word),
requires_grad=True,
))
# self.register_parameter('word_embed', nn.Parameter(self._word_embed))
# lstms
# h,c for lstm weights, w b for mlp weights, bias
(
self.user_word_lstm,
self.h_1,
self.c_1,
self.w_l1,
self.b_l1,
self.loss1,
) = self._rnn_lstm(1, self.args.batch_num, 64, 64)
(
self.user_item_query_lstm,
self.h_2,
self.c_2,
self.w_l2,
self.b_l2,
self.loss2,
) = self._rnn_lstm(1, self.args.batch_num, 64, 64)
(
self.user_query_item_lstm,
self.h_3,
self.c_3,
self.w_l3,
self.b_l3,
self.loss3,
) = self._rnn_lstm(1, self.args.batch_num, 64, 64)
(
self.user_query_seq_lstm,
self.h_4,
self.c_4,
self.w_l4,
self.b_l4,
self.loss4,
) = self._rnn_lstm(1, self.args.batch_num, 64, 64)
# cnn
self.query_item_query_cnn, self.conv_w1, self.loss5 = self._cnn(64)
self.query_item_query_linear = nn.Linear(12 * 2 * 1, 64)
self.query_item_query_relu = nn.ReLU()
self.query_user_item_cnn, self.conv_w2, self.loss6 = self._cnn(64)
self.query_user_item_linear = nn.Linear(12 * 2 * 1, 64)
self.query_user_item_relu = nn.ReLU()
# weights & bias
# wide feats, mlp layers for wide feats, 81 for static feats length
self.wide_feat_w, self.loss7 = self.get_weights_variables(
[64, 81], self.args.weight_decay)
self.wide_feat_b = self.get_bias_variables(64)
# concat query weights, 64 * 7 for concat feats len
self.concat_query_w, self.loss8 = self.get_weights_variables(
[64, 64 * 7], self.args.weight_decay)
self.concat_query_b = self.get_bias_variables(64)
# concat_query_user_wide, concat query and
# user wide infos, then len: 128
self.concat_query_user_wide_w, self.loss9 = self.get_weights_variables(
[64, 128], self.args.weight_decay)
self.concat_query_user_wide_b = self.get_bias_variables(64)
# deep_wide_feat, the last layer mlp => predict val
self.deep_wide_feat_w, self.loss10 = self.get_weights_variables(
[1, 64], self.args.weight_decay)
self.deep_wide_feat_b = self.get_bias_variables(1)
@property
def regular_loss(self):
return (
self.get_regular_loss(self.w_l1) +
self.get_regular_loss(self.w_l2) +
self.get_regular_loss(self.w_l3) +
self.get_regular_loss(self.w_l4) +
self.get_regular_loss(self.wide_feat_w) +
self.get_regular_loss(self.concat_query_w) +
self.get_regular_loss(self.concat_query_user_wide_w) +
self.get_regular_loss(self.deep_wide_feat_w))
def get_regular_loss(self, params):
return torch.sum(torch.pow(params, 2)) / 2 * self.args.weight_decay
def get_weights_variables(self, shape, weight_decay, trainable=True):
params = nn.Parameter(
Variable(torch.Tensor(*shape), requires_grad=trainable))
if weight_decay == 0:
regular_loss = 0.0
else:
# xavier initializer, need params demension >= 2
nn.init.xavier_uniform_(params, gain=1.0)
# l2 regular loss for weights
regular_loss = torch.sum(torch.pow(params, 2)) / 2 * weight_decay
return params, regular_loss
def get_bias_variables(self, size, trainable=True):
params = nn.Parameter(
Variable(torch.Tensor(size, 1), requires_grad=trainable))
# constant initialize of
nn.init.constant_(params, 0.0)
return params
def _rnn_lstm(self, layers_num, batches_num, features_num, hidden_size):
# LstmCell: features * hidden_size * layers_num
lstm = nn.LSTM(features_num, hidden_size, layers_num, bias=True)
# weights: num_layers * batch * hidden size
h_0, regular_loss_h0 = self.get_weights_variables(
[layers_num, batches_num, hidden_size], self.args.weight_decay)
c_0, regular_loss_c0 = self.get_weights_variables(
[layers_num, batches_num, hidden_size], self.args.weight_decay)
w_l, regular_loss_wl = self.get_weights_variables(
[hidden_size, hidden_size], self.args.weight_decay)
b_l = self.get_bias_variables(hidden_size)
# hidden_layer = torch.tanh(torch.matmul(w_l, lstm_cell.T) + b_l)
loss_total = regular_loss_h0 + regular_loss_c0 + regular_loss_wl
# output: 64 * batch_num
return lstm, h_0, c_0, w_l, b_l, loss_total
def _cnn(self, features_num):
# x: batch * channels * h * w
# x_input = input.view(-1, 1, nums, features_num)
conv_w, regular_loss_w = self.get_weights_variables(
[12, 1, 2, features_num], self.args.weight_decay)
conv_b, _ = self.get_weights_variables([12], 0)
# default stride 1, padding valid
conv = nn.Conv2d(1, 12, kernel_size=(2, features_num), stride=1, padding='valid')
return conv, conv_w, regular_loss_w
def forward(self, x):
# x:[m, batch_size]; 912*512
wide_feat = x[:81, :]
user_item_seq = x[81:276, :]
query_feat = x[276:292, :]
user_query_seq = x[292:462, :]
query_item_query = x[462:562, :]
user_query_item = x[562:662, :]
user_item_query = x[662:812, :]
query_user_item = x[812:, :]
# query embedding, query terms 10 * batch
query_terms, query_topcate, query_leafcate = torch.split(
query_feat,
[
self.query_length,
self.query_topcate_length,
self.query_leafcate_length,
],
0,
)
# look up in word embedding's dict [280000, 64] => 10 * batch * 64
inputs_query_raw = torch.nn.functional.embedding(query_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(query_terms))
if torch.sum(torch.sign(query_terms)) > 1 else
torch.tensor(1))
# get query word to vec sum 64 * batchsize
self.query_w2v_sum = torch.mean(
inputs_query_raw[:int(input_num.item())], 0).T #64*512
# user word embedding
raw_word_embedding_list = torch.split(user_item_seq[-13 * 5:, :],
[13] * 5, 0)
step_embedding_list = []
for raw_word_embed in raw_word_embedding_list:
item_terms, item_topcate, item_leafcate, time_delta = torch.split(
raw_word_embed, [self.user_item_term_length, 1, 1, 1],
0)
step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(item_terms))
if torch.sum(torch.sign(item_terms)) > 1 else
torch.tensor(1))
# step_avg_embedding: batchsize * 64
step_avg_embedding = torch.mean(
step_embedding[:int(input_num.item())], 0)
# append a new axis in the first
step_embedding_list.append(step_avg_embedding.unsqueeze(0))
# step_embedding vec: 5 * batchsize * 64
step_embedding_vec = torch.cat(step_embedding_list, 0)
lstm_cells, lstm_hiddens = self.user_word_lstm(step_embedding_vec,
(self.h_1, self.c_1))
self.user_item_term_lstm_output = torch.tanh(
torch.matmul(self.w_l1, lstm_cells[-1].T) + self.b_l1)
# user_item_query_embedding
raw_user_item_query_embedding_list = torch.split(
user_item_query[:10 * 5, :], [10] * 5, 0)
step_embedding_list = []
for raw_user_item_embed in raw_user_item_query_embedding_list:
item_terms = raw_user_item_embed[:5]
step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(item_terms))
if torch.sum(torch.sign(item_terms)) > 1 else
torch.tensor(1))
step_avg_embedding = torch.mean(
step_embedding[:int(input_num.item())], 0)
step_embedding_list.append(step_avg_embedding.unsqueeze(0))
step_embedding_vec = torch.cat(step_embedding_list, 0)
lstm_cells, lstm_hiddens = self.user_item_query_lstm(
step_embedding_vec, (self.h_2, self.c_2))
self.user_item_query_term_lstm_output = torch.tanh(
torch.matmul(self.w_l2, lstm_cells[-1].T) + self.b_l2)
# user_query_item embedding
raw_user_query_item_embedding_list = torch.split(
user_query_item[-10 * 5:, :], [10] * 5, 0)
step_embedding_list = []
for raw_user_item_embed in raw_user_query_item_embedding_list:
item_terms = raw_user_item_embed[:5]
step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(item_terms))
if torch.sum(torch.sign(item_terms)) > 1 else
torch.tensor(1))
step_avg_embedding = torch.mean(
step_embedding[:int(input_num.item())], 0)
step_embedding_list.append(step_avg_embedding.unsqueeze(0))
step_embedding_vec = torch.cat(step_embedding_list, 0)
lstm_cells, lstm_hiddens = self.user_query_item_lstm(
step_embedding_vec, (self.h_3, self.c_3))
self.user_query_item_term_lstm_output = torch.tanh(
torch.matmul(self.w_l3, lstm_cells[-1].T) + self.b_l3)
# query_item_query embed
raw_query_item_query_embedding_list = torch.split(
query_item_query[-10 * 5:, :], [10] * 5, 0)
step_embedding_list = []
for raw_user_item_embed in raw_query_item_query_embedding_list:
query_terms = raw_user_item_embed[:5]
step_embedding = torch.nn.functional.embedding(query_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(query_terms))
if torch.sum(torch.sign(query_terms)) > 1 else
torch.tensor(1))
step_avg_embedding = torch.mean( # 512 * 64
step_embedding[:int(input_num.item())], 0)
step_embedding_list.append(step_avg_embedding.unsqueeze(0))
step_embedding_vec = torch.cat(step_embedding_list, 0) # 5 * 512 * 64
convd = self.query_item_query_cnn(
torch.transpose(step_embedding_vec, 0, 1).unsqueeze(1))
convd_active = F.relu(convd)
pooled = F.max_pool2d(convd_active, (2, 1), stride=2)
pooled = torch.transpose(pooled, 1, 2)
pooled = torch.transpose(pooled, 2, 3)
pool_flat = pooled.reshape(-1, 2 * 1 * 12)
self.query_item_query_cnn_output = self.query_item_query_relu(
self.query_item_query_linear(pool_flat)).T
# query_user_item embedd
raw_query_user_item_embedding_list = torch.split(
query_user_item[-10 * 5:, :], [10] * 5, 0)
step_embedding_list = []
for raw_user_item_embed in raw_query_user_item_embedding_list:
item_terms = raw_user_item_embed[:5]
step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(item_terms))
if torch.sum(torch.sign(item_terms)) > 1 else
torch.tensor(1))
step_avg_embedding = torch.mean(
step_embedding[:int(input_num.item())], 0)
step_embedding_list.append(step_avg_embedding.unsqueeze(0))
step_embedding_vec = torch.cat(step_embedding_list, 0)
convd = self.query_user_item_cnn(
torch.transpose(step_embedding_vec, 0, 1).unsqueeze(1))
convd_active = F.relu(convd)
pooled = F.max_pool2d(convd_active, (2, 1), stride=2)
pooled = torch.transpose(pooled, 1, 2)
pooled = torch.transpose(pooled, 2, 3)
pool_flat = pooled.reshape(-1, 2 * 1 * 12)
self.query_user_item_cnn_output = self.query_user_item_relu(
self.query_user_item_linear(pool_flat)).T
# user_query_seq embed
raw_user_query_seq_embedding_list = torch.split(
user_query_seq[-17 * 5:, :], [17] * 5, 0)
step_embedding_list = []
for raw_user_item_embed in raw_user_query_seq_embedding_list[::-1]:
(
query_terms,
query_topcate,
query_leafcate,
time_delta,
) = torch.split(raw_user_item_embed,
[self.user_query_term_length, 3, 3, 1], 0)
step_embedding = torch.nn.functional.embedding(query_terms.to(torch.int64), self._word_embed)
input_num = (torch.sum(torch.sign(query_terms))
if torch.sum(torch.sign(query_terms)) > 1 else
torch.tensor(1))
step_avg_embedding = torch.mean(
step_embedding[:int(input_num.item())], 0)
step_embedding_list.append(step_avg_embedding.unsqueeze(0))
step_embedding_vec = torch.cat(step_embedding_list, 0)
lstm_cells, lstm_hiddens = self.user_query_seq_lstm(
step_embedding_vec, (self.h_4, self.c_4))
self.user_query_term_lstm_output = torch.tanh(
torch.matmul(self.w_l4, lstm_cells[-1].T) + self.b_l4)
# wide connected, connect static params
# wide feat hidden output: 64 * batch_size
self.wide_hidden_layer1 = torch.tanh( # [64, 81] * [81, 1]
F.dropout(
torch.matmul(self.wide_feat_w, wide_feat.float()) +
self.wide_feat_b,
self.keep_prob
))
concat_seq = [
self.user_item_term_lstm_output,
self.user_query_term_lstm_output,
self.query_w2v_sum,
self.user_item_query_term_lstm_output,
self.user_query_item_term_lstm_output,
self.query_item_query_cnn_output,
self.query_user_item_cnn_output,
]
qu_term_concat = F.dropout(torch.cat(concat_seq, 0), self.keep_prob) # [64*7, 1]
# concat user query feats: 64 * batch_size
self.qu_term_hidden_layer1 = torch.tanh(
F.dropout(
torch.matmul(self.concat_query_w, qu_term_concat) + #聚合特征信息 [64, 64*7] * [64*7, 1]
self.concat_query_b,
self.keep_prob
))
# concat feats and static datas: 128 * batch_size
deep_wide_concat = torch.cat( # [64, 1] || [64, 1] -> [128, 1]
[self.qu_term_hidden_layer1, self.wide_hidden_layer1], 0)
# mlp for wide concat data : 64 * batch_size
self.dw_hidden_layer0 = torch.tanh( # [64, 128] * [128 * 1] mlp
F.dropout(
torch.matmul(self.concat_query_user_wide_w, deep_wide_concat) +
self.concat_query_user_wide_b,
self.keep_prob
))
self.dw_hidden_layer1 = torch.sigmoid( # [1, 64] * [64, 1] -> 1
torch.matmul(self.deep_wide_feat_w, self.dw_hidden_layer0) +
self.deep_wide_feat_b)
self.predict_labels = self.dw_hidden_layer1.squeeze()
return self.predict_labels