-
Notifications
You must be signed in to change notification settings - Fork 147
/
RGCN.py
237 lines (211 loc) · 7.83 KB
/
RGCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import dgl.nn as dglnn
from . import BaseModel, register_model
@register_model('RGCN')
class RGCN(BaseModel):
"""
**Title:** `Modeling Relational Data with Graph Convolutional Networks <https://arxiv.org/abs/1703.06103>`_
**Authors:** Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling
Parameters
----------
in_dim : int
Input feature size.
hidden_dim : int
Hidden dimension .
out_dim : int
Output feature size.
etypes : list[str]
Relation names.
num_bases : int, optional
Number of bases. If is none, use number of relations. Default: None.
num_hidden_layers: int
Number of RelGraphConvLayer
dropout : float, optional
Dropout rate. Default: 0.0
use_self_loop : bool, optional
True to include self loop message. Default: False
Attributes
-----------
RelGraphConvLayer: RelGraphConvLayer
"""
@classmethod
def build_model_from_args(cls, args, hg):
return cls(args.hidden_dim,
args.hidden_dim,
args.out_dim,
hg.etypes,
args.n_bases,
args.num_layers - 2,
dropout=args.dropout)
def __init__(self, in_dim,
hidden_dim,
out_dim,
etypes,
num_bases,
num_hidden_layers=1,
dropout=0,
use_self_loop=False):
super(RGCN, self).__init__()
self.in_dim = in_dim
self.h_dim = hidden_dim
self.out_dim = out_dim
self.rel_names = list(set(etypes))
self.rel_names.sort()
if num_bases < 0 or num_bases > len(self.rel_names):
self.num_bases = len(self.rel_names)
else:
self.num_bases = num_bases
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.use_self_loop = use_self_loop
self.layers = nn.ModuleList()
# input 2 hidden
self.layers.append(RelGraphConvLayer(
self.in_dim, self.h_dim, self.rel_names,
self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
dropout=self.dropout, weight=True))
# hidden 2 hidden
for i in range(self.num_hidden_layers):
self.layers.append(RelGraphConvLayer(
self.h_dim, self.h_dim, self.rel_names,
self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
dropout=self.dropout))
# hidden 2 output
self.layers.append(RelGraphConvLayer(
self.h_dim, self.out_dim, self.rel_names,
self.num_bases, activation=None,
self_loop=self.use_self_loop))
def forward(self, hg, h_dict):
r"""
Support full-batch and mini-batch training.
Parameters
----------
hg: dgl.HeteroGraph or dgl.blocks
Input graph
h_dict: dict[str, th.Tensor]
Input feature
Returns
-------
h: dict[str, th.Tensor]
output feature
"""
if hasattr(hg, 'ntypes'):
# full graph training,
for layer in self.layers:
h_dict = layer(hg, h_dict)
else:
# minibatch training, block
for layer, block in zip(self.layers, hg):
h_dict = layer(block, h_dict)
return h_dict
def l2_penalty(self):
loss = 0.0005 * th.norm(self.layers[0].weight, p=2, dim=1)
return loss
class RelGraphConvLayer(nn.Module):
r"""Relational graph convolution layer.
We use `HeteroGraphConv <https://docs.dgl.ai/api/python/nn.pytorch.html#heterographconv>`_ to implement the model.
Parameters
----------
in_feat : int
Input feature size.
out_feat : int
Output feature size.
rel_names : list[str]
Relation names.
num_bases : int, optional
Number of bases. If is none, use number of relations. Default: None.
weight : bool, optional
True if a linear layer is applied after message passing. Default: True
bias : bool, optional
True if bias is added. Default: True
activation : callable, optional
Activation function. Default: None
self_loop : bool, optional
True to include self loop message. Default: False
dropout : float, optional
Dropout rate. Default: 0.0
"""
def __init__(self,
in_feat,
out_feat,
rel_names,
num_bases,
*,
weight=True,
bias=True,
activation=None,
self_loop=False,
dropout=0.0):
super(RelGraphConvLayer, self).__init__()
self.in_feat = in_feat
self.out_feat = out_feat
self.rel_names = rel_names
self.num_bases = num_bases
self.bias = bias
self.activation = activation
self.self_loop = self_loop
self.batchnorm = False
self.conv = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feat, out_feat, norm='right', weight=False, bias=False)
for rel in rel_names
})
self.use_weight = weight
self.use_basis = num_bases < len(self.rel_names) and weight
if self.use_weight:
if self.use_basis:
self.basis = dglnn.WeightBasis((in_feat, out_feat), num_bases, len(self.rel_names))
else:
self.weight = nn.Parameter(th.Tensor(len(self.rel_names), in_feat, out_feat))
nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))
# bias
if bias:
self.h_bias = nn.Parameter(th.Tensor(out_feat))
nn.init.zeros_(self.h_bias)
# weight for self loop
if self.self_loop:
self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
nn.init.xavier_uniform_(self.loop_weight,
gain=nn.init.calculate_gain('relu'))
# define batch norm layer
if self.batchnorm:
self.bn = nn.BatchNorm1d(out_feat)
self.dropout = nn.Dropout(dropout)
def forward(self, g, inputs):
"""Forward computation
Parameters
----------
g : DGLHeteroGraph
Input graph.
inputs : dict[str, torch.Tensor]
Node feature for each node type.
Returns
-------
dict[str, torch.Tensor]
New node features for each node type.
"""
g = g.local_var()
if self.use_weight:
weight = self.basis() if self.use_basis else self.weight
wdict = {self.rel_names[i]: {'weight': w.squeeze(0)}
for i, w in enumerate(th.split(weight, 1, dim=0))}
else:
wdict = {}
if g.is_block:
inputs_src = inputs
inputs_dst = {k: v[:g.number_of_dst_nodes(k)] for k, v in inputs.items()}
else:
inputs_src = inputs_dst = inputs
hs = self.conv(g, inputs_src, mod_kwargs=wdict)
def _apply(ntype, h):
if self.self_loop:
h = h + th.matmul(inputs_dst[ntype], self.loop_weight)
if self.bias:
h = h + self.h_bias
if self.activation:
h = self.activation(h)
if self.batchnorm:
h = self.bn(h)
return self.dropout(h)
return {ntype: _apply(ntype, h) for ntype, h in hs.items()}