-
Notifications
You must be signed in to change notification settings - Fork 147
/
SIAN.py
236 lines (193 loc) · 11.5 KB
/
SIAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from functools import reduce
from . import BaseModel,register_model
@register_model('SIAN')
class SIAN(BaseModel):
@classmethod
def build_model_from_args(cls, args, dataset):
return SIAN(args.user_num, args.item_num, dataset.user_profile, dataset.item_profile, dataset.u_items, dataset.i_users, dataset.social_relation,
args.emb_size, args.profile_size, args.device)
def __init__(self, user_num, item_num,
user_profile, item_profile,
user_items, item_users, social_rel,
emb_size=64, profile_size=64, device='cpu'):
super(SIAN, self).__init__()
self.emb_size = emb_size
self.profile_size = profile_size
self.device = device
self.user_embedding = nn.Embedding(user_num, self.emb_size).to(self.device)
self.item_embedding = nn.Embedding(item_num, self.emb_size).to(self.device)
self.user_profile = user_profile.to(self.device)
self.item_profile = item_profile.to(self.device)
self.user_items = user_items
self.item_users = item_users
self.social_rel = social_rel
self.fusion = Fusion(self.emb_size, self.profile_size).to(self.device)
self.att = Attention(self.emb_size).to(self.device)
# -------- Yelp data
self.item_feat_agg = FeatureAgg(self.item_embedding, {'user': self.user_embedding},
self.item_profile, {'user': self.user_profile},
{'user': self.item_users}, ['user'], self.emb_size, self.device,
self.fusion, self.att).to(self.device)
self.user_feat_social_agg = FeatureAgg(self.user_embedding,
{'item': self.item_embedding, 'user': self.user_embedding},
self.user_profile,
{'item': self.item_profile, 'user': self.user_profile},
{'item': self.user_items, 'user': self.social_rel},
['item', 'user'], self.emb_size, self.device, self.fusion, self.att).to(self.device)
self.social_inf_prop = InfluenceProp(self.social_rel, self.emb_size,
self.user_embedding, self.user_profile,
self.fusion, self.att).to(self.device)
self.w_u1 = nn.Linear(self.emb_size, self.emb_size).to(self.device)
self.w_u2 = nn.Linear(self.emb_size, self.emb_size).to(self.device)
self.w_f1 = nn.Linear(self.emb_size, self.emb_size).to(self.device)
self.w_f2 = nn.Linear(self.emb_size, self.emb_size).to(self.device)
self.w_i1 = nn.Linear(self.emb_size, self.emb_size).to(self.device)
self.w_i2 = nn.Linear(self.emb_size, self.emb_size).to(self.device)
self.w_ui1 = nn.Linear(self.emb_size * 2, self.emb_size).to(self.device)
self.w_ui2 = nn.Linear(self.emb_size, 16).to(self.device)
self.w_ui3 = nn.Linear(16, 1).to(self.device)
self.w_ufi1 = nn.Linear(self.emb_size * 3, self.emb_size).to(self.device)
self.w_ufi2 = nn.Linear(self.emb_size, 16).to(self.device)
self.w_ufi3 = nn.Linear(16, 1).to(self.device)
self.bn1 = nn.BatchNorm1d(self.emb_size, momentum=0.5).to(self.device)
self.bn2 = nn.BatchNorm1d(self.emb_size, momentum=0.5).to(self.device)
self.bn3 = nn.BatchNorm1d(self.emb_size, momentum=0.5).to(self.device)
self.bnf = nn.BatchNorm1d(self.emb_size, momentum=0.5).to(self.device)
self.bn4 = nn.BatchNorm1d(16, momentum=0.5).to(self.device)
self.item_fea_att_analysis = []
self.user_fea_att_analysis = []
self.inf_att_analysis = []
def forward(self, users, items, act_users):
i_embs, item_fea_att_list = self.item_feat_agg(items)
u_embs, user_fea_att_list = self.user_feat_social_agg(users)
u_inf, inf_att_list = self.social_inf_prop(users, u_embs, items, i_embs, act_users)
x_u = F.relu(self.bn1(self.w_u1(u_embs)))
x_u = F.dropout(x_u, training=self.training)
x_u = self.w_u2(x_u)
x_f = F.relu(self.bnf(self.w_f1(u_inf)))
x_f = F.dropout(x_f, training=self.training)
x_f = self.w_f2(x_f)
x_i = F.relu(self.bn2(self.w_i1(i_embs)))
x_i = F.dropout(x_i, training=self.training)
x_i = self.w_i2(x_i)
x_ufi = torch.cat((x_u, x_f, x_i), 1)
x = F.relu(self.bn3(self.w_ufi1(x_ufi)))
x = F.dropout(x, training=self.training)
x = F.relu(self.bn4(self.w_ufi2(x)))
x = F.dropout(x, training=self.training)
scores = torch.sigmoid(self.w_ufi3(x))
return scores.squeeze()
class Attention(nn.Module):
def __init__(self, embedding_dims):
super(Attention, self).__init__()
self.embed_dim = embedding_dims
self.att1 = nn.Linear(self.embed_dim * 2, self.embed_dim)
self.att2 = nn.Linear(self.embed_dim, self.embed_dim)
self.att3 = nn.Linear(self.embed_dim, 1)
def forward(self, node, neighs, num_neighs):
node = node.repeat(num_neighs, 1) # (num_neighs, dim)
x = torch.cat((neighs, node), 1) # (num_neighs, 2*dim)
x = F.relu(self.att1(x))
x = F.dropout(x, training=self.training)
x = F.relu(self.att2(x))
x = F.dropout(x, training=self.training)
x = self.att3(x)
att = F.softmax(x, dim=0)
return att
class Fusion(nn.Module):
def __init__(self, embedding_dims, profile_dim):
super(Fusion, self).__init__()
self.embed_dim = embedding_dims
self.profile_dim = profile_dim
self.w_1 = nn.Linear(self.embed_dim * 2, self.embed_dim)
self.w_2 = nn.Linear(self.embed_dim, self.embed_dim)
self.linear = nn.Linear(profile_dim, self.embed_dim)
def forward(self, embedding, profile):
return embedding
class InfluenceProp(nn.Module):
def __init__(self, social_rel, emb_size, user_embs, user_profiles, fusion, att):
super(InfluenceProp, self).__init__()
self.social_rel = social_rel
self.emb_size = emb_size
self.user_embs = user_embs
self.user_profiles = user_profiles
self.linear = nn.Linear(2 * self.emb_size, self.emb_size)
self.fusion = fusion
self.att = att
self.w_c1 = nn.Linear(self.emb_size * 2, self.emb_size)
self.w_c2 = nn.Linear(self.emb_size, self.emb_size)
def forward(self, users, u_embs, items, i_embs, act_users):
batch_size = len(users)
act_u_fusion = list(map(lambda x: self.fusion(self.user_embs.weight[x], self.user_profiles[x]), act_users))
coupling_fea = list(map(lambda idx: torch.cat((act_u_fusion[idx],
i_embs[idx].repeat(len(act_u_fusion[idx]), 1)), 1),
range(batch_size)))
coupling_fea = list(map(lambda idx: F.relu(self.w_c1(coupling_fea[idx])), range(batch_size)))
coupling_fea = list(map(lambda idx: F.relu(self.w_c2(coupling_fea[idx])), range(batch_size)))
attention_list = list(map(lambda idx: self.att(u_embs[idx], coupling_fea[idx], len(act_users[idx])),
range(batch_size)))
neigh_feature_matrix_coupling = torch.stack(
[torch.mm(coupling_fea[idx].t(), attention_list[idx]) for idx in range(batch_size)]
).reshape(batch_size, self.emb_size).to(users.device)
combined_feature = neigh_feature_matrix_coupling
return combined_feature, attention_list
class FeatureAgg(nn.Module):
def __init__(self, nodes_embeddings, neighbors_embeddings,
nodes_profiles, neighbors_profiles,
nodes_neighbors, neighbor_types,
emb_size, device, fusion, att):
super(FeatureAgg, self).__init__()
self.emb_size = emb_size
self.device = device
self.nodes_embeddings = nodes_embeddings.to(self.device) # Embedding
self.neighbors_embeddings_dict = neighbors_embeddings # {type: Embedding}
self.nodes_profiles = nodes_profiles.to(self.device) # Embedding
self.neighbors_profiles_dict = neighbors_profiles # {type: Embedding}
self.nodes_neighbors_dict = nodes_neighbors # {type: {node: [neigh]}}
self.neighbor_types_set = set(neighbor_types) # [type]
self.num_neigh_type = len(self.neighbor_types_set)
self.linear_1 = nn.Linear(self.emb_size, self.emb_size)
self.linear_2 = nn.Linear(self.emb_size, self.emb_size)
self.linear = nn.Linear(self.emb_size * 2, self.emb_size)
self.fusion = fusion
self.att = att
self.w_type_att = nn.Linear(self.emb_size * self.num_neigh_type, self.num_neigh_type, bias=False)
def forward(self, nodes):
batch_size = len(nodes)
nodes_emb = self.nodes_embeddings.weight[nodes] # (#node, dim)
nodes = nodes.to(self.device)
nodes_profile = self.nodes_profiles[nodes]
nodes_fusion = self.fusion(nodes_emb, nodes_profile)
neigh_type_agg = [] # (len(neigh_type_set), batch, dim)
for idx, neigh_type in enumerate(self.neighbor_types_set):
node_neighs = self.nodes_neighbors_dict[neigh_type]
neighs = list(map(lambda y: list(y), map(lambda x: node_neighs[int(x)], nodes)))
neigh_agg = self.aggregation(nodes_fusion, neighs, neigh_type, batch_size) # (batch, dim)
neigh_type_agg.append(neigh_agg)
type_agg = torch.Tensor(reduce(lambda x, y: torch.cat((x, y), 1), neigh_type_agg).cpu()).to(
nodes.device) # (batch, len(neigh_type_set)*dim)
map_type_agg = self.w_type_att(type_agg) # (batch, #type)
att = F.softmax(map_type_agg, dim=1).view(batch_size, self.num_neigh_type, 1) # (b, #type)
neigh_agg_final = torch.matmul(torch.transpose(type_agg.view(batch_size, -1, self.emb_size), dim0=1, dim1=2),
att).squeeze() # (batch, dim)
neigh_agg_final = F.relu(self.linear_2(neigh_agg_final))
combined_feature = torch.cat([nodes_fusion, neigh_agg_final], dim=1)
combined_feature = F.relu(self.linear(combined_feature))
return combined_feature, att
def aggregation(self, nodes_fusion, nodes_neighbors, neigh_type, batch_size):
neighbors_embeddings = self.neighbors_embeddings_dict[neigh_type].to(self.device)
neighbors_profiles = self.neighbors_profiles_dict[neigh_type].to(self.device)
neighs_fusion = list(map(lambda x: self.fusion(neighbors_embeddings.weight[x], neighbors_profiles[x]),
nodes_neighbors))
attention_list = list(
map(lambda idx: self.att(nodes_fusion[idx], neighs_fusion[idx], len(nodes_neighbors[idx])),
range(batch_size)))
neigh_feature_matrix = torch.stack(
[torch.mm(neighs_fusion[idx].t().to(self.device), attention_list[idx].to(self.device)) for idx in range(batch_size)]
).reshape(batch_size, self.emb_size).to(nodes_fusion.device)
combined_feature = F.relu(self.linear_1(neigh_feature_matrix))
return combined_feature # (#node, emb_size)