-
Notifications
You must be signed in to change notification settings - Fork 147
/
SLiCE.py
495 lines (435 loc) · 19.2 KB
/
SLiCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import math
import dgl
import random
import dgl.nn as dglnn
from . import BaseModel, register_model
from .CompGCN import CompGraphConvLayer
import os
def get_norm_id(id_map, some_id):
#如果不存在,返回一个id最大值
if some_id not in id_map:
id_map[some_id] = len(id_map)
return id_map[some_id]
def norm_graph(node_id_map, edge_id_map, edge_list):
norm_edge_list = []
for e in edge_list:
norm_edge_list.append(
(
get_norm_id(node_id_map, e[0]),
get_norm_id(node_id_map, e[1]),
get_norm_id(edge_id_map, e[2]),
)
)
return norm_edge_list
class NodeEncoder(torch.nn.Module):
def __init__(
self,
base_embedding_dim,
num_nodes,
pretrained_node_embedding_tensor,
is_pre_trained,
):
super().__init__()
self.pretrained_node_embedding_tensor = pretrained_node_embedding_tensor
self.base_embedding_dim = base_embedding_dim
if not is_pre_trained:
self.base_embedding_layer = torch.nn.Embedding(
num_nodes, base_embedding_dim
)#.cuda()
self.base_embedding_layer.weight.data.uniform_(-1, 1)
else:
self.base_embedding_layer = torch.nn.Embedding.from_pretrained(
pretrained_node_embedding_tensor
)#.cuda()
def forward(self, node_id):
node_id = torch.LongTensor([int(node_id)])#.cuda()
x_base = self.base_embedding_layer(node_id)
return x_base
class GCNGraphEncoder(torch.nn.Module):
def __init__(
self,
G,
pretrained_node_embedding_tensor,
is_pre_trained,
base_embedding_dim,
max_length,
):
super().__init__()
self.g = G
self.base_embedding_dim = base_embedding_dim
self.max_length = max_length
self.no_nodes = self.g.num_nodes() #用DGL的表示方式
self.no_relations = self.g.num_edges()
# print('check *************', self.no_relations)
self.node_embedding = NodeEncoder(
base_embedding_dim,
self.no_nodes,
pretrained_node_embedding_tensor,
is_pre_trained,
)
self.special_tokens = {"[PAD]": 0, "[MASK]": 1}
self.special_embed = torch.nn.Embedding(
len(self.special_tokens), base_embedding_dim
)
self.special_embed.weight.data.uniform_(-1, 1)
def forward(self, subgraphs_list, masked_nodes):
num_subgraphs = len(subgraphs_list)
node_emb = torch.zeros(
num_subgraphs, self.max_length + 1, self.base_embedding_dim#+1是因为包含
)
for ii,subgraph in enumerate(subgraphs_list):
#node_id_map = batch_id_maps[ii][0]
#edge_type_map = batch_id_maps[ii][1]
masked_set = masked_nodes[ii]
for node in subgraph.nodes():
node_id=subgraph.ndata[dgl.NID][int(node)]
if node_id not in masked_set: # used to ignore the masked nodes
node_emb[ii][node] = self.node_embedding(int(node_id))
# get embeddings for special tokens
# will be used for masking and padding before bert layer
special_tokens_embed = {}
for token in self.special_tokens:
node_id = Variable(torch.LongTensor([self.special_tokens[token]]))
tmp_embed = self.special_embed(node_id)
special_tokens_embed[self.special_tokens[token] + self.no_nodes] = {
"token": token,
"embed": tmp_embed,
}
return node_emb
def get_attn_pad_mask(subgraph_list, pad_id, max_len):
#seq_q and seq_k are both all_nodes, which is list(list(subgraph_nodes))
batch_size = len(subgraph_list)
len_q=max_len
# print(batch_size, len_q, len_k)
pad_attn_mask = []
for itm in subgraph_list:
tmp_mask = []
for sub in itm.ndata[dgl.NID]:
if sub == pad_id:
tmp_mask.append(True)
else:
tmp_mask.append(False)
if len(tmp_mask)<max_len:
tmp_mask=tmp_mask+[True]*(max_len-len(tmp_mask))
pad_attn_mask.append(tmp_mask)
# print(tmp_mask)
# print('mask', len(pad_attn_mask), len(pad_attn_mask[0]))
pad_attn_mask = Variable(torch.ByteTensor(pad_attn_mask)).unsqueeze(1)
pad_attn_mask = pad_attn_mask#.cuda()
return pad_attn_mask.expand(batch_size, len_q, len_q) # batch_size x len_q x len_k
def gelu(x):
""""Implementation of the gelu activation function by Hugging Face."""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class ScaledDotProductAttention(torch.nn.Module):
def __init__(self, d_k):
super(ScaledDotProductAttention, self).__init__()
self.d_k = d_k
def forward(self, Q, K, V, attn_mask=None):
# print('mask', attn_mask.size())
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k)
scores.masked_fill_(attn_mask == True, -1e9)#change dropped softmax value into
attn = torch.nn.Softmax(dim=-1)(scores)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(torch.nn.Module):
def __init__(self, d_model, d_k, d_v, n_heads):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.d_k = d_k #dimension of K and Q
self.d_v = d_v #dimension of V
self.d_model = d_model
self.W_Q = torch.nn.Linear(d_model, d_k * n_heads)
self.W_K = torch.nn.Linear(d_model, d_k * n_heads)
self.W_V = torch.nn.Linear(d_model, d_v * n_heads)
self.scaled_dot_prod_attn = ScaledDotProductAttention(d_k)
self.wrap = torch.nn.Linear(self.n_heads * self.d_v, self.d_model)
self.layerNorm = torch.nn.LayerNorm(self.d_model)
def forward(self, Q, K, V, attn_mask=None):
#This V is not the V matrix of dot attention.
residual, batch_size = Q, Q.size(0)
q_s = self.W_Q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)#128(batcch)*4(head)*7(n_nodes)*64(d_k)
k_s = self.W_K(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2)
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1)
context, attn = self.scaled_dot_prod_attn(q_s, k_s, v_s, attn_mask=attn_mask)#context is H*A
context = (
context.transpose(1, 2)
.contiguous()
.view(batch_size, -1, self.n_heads * self.d_v)
)
output = self.wrap(context)
return self.layerNorm(output + residual), attn
#fNN in the paper
class PoswiseFeedForwardNet(torch.nn.Module):
def __init__(self, d_model, d_ff):
super(PoswiseFeedForwardNet, self).__init__()
self.fc1 = torch.nn.Linear(d_model, d_ff)
self.fc2 = torch.nn.Linear(d_ff, d_model)
def forward(self, x):
return self.fc2(gelu(self.fc1(x)))
class EncoderLayer(torch.nn.Module):
def __init__(self, d_model, d_k, d_v, d_ff, n_heads):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention(d_model, d_k, d_v, n_heads)
self.pos_ffn = PoswiseFeedForwardNet(d_model, d_ff)
def forward(self, enc_inputs, enc_self_attn_mask):
enc_outputs, attn = self.enc_self_attn(
enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask
) # enc_inputs to same Q,K,V
enc_outputs = self.pos_ffn(
enc_outputs
) # enc_outputs: [batch_size x len_q x d_model]
return enc_outputs, attn
@register_model('SLiCE')
class SLiCE(BaseModel):
@classmethod
def build_model_from_args(cls, args, hg):
# if args.embed_dir:
# pretrained_node_embedding_tensor=load_pickle(args.embed_dir)
return cls(G=hg,pretrained_node_embedding_tensor=None,args=args)#to-do: 命令行解析
def load_pretrained_node2vec(self,filename, base_emb_dim):
"""
loads embeddings from node2vec style file, where each line is
nodeid node_embedding
returns tensor containing node_embeddings
for graph nodes 0 to n-1
"""
node_embeddings = torch.empty(self.g.num_nodes(), 100)
with open(filename, "r") as f:
header = f.readline()
emb_dim = int(header.strip().split()[1])
for line in f:
arr = line.strip().split()
graph_node_id = arr[0]
node_emb = [float(x) for x in arr[1:]]
vocab_id = int(graph_node_id)
if vocab_id >= 0:
node_embeddings[vocab_id] = torch.tensor(node_emb)
# print(torch.tensor(node_emb).size())
out = node_embeddings
print("node2vec tensor", out.size())
return out
#参数来自原论文默认参数
def __init__(self,
G, #G为DGLGraph
args,
pretrained_node_embedding_tensor,
num_layers=6,
d_model=200,
d_k=64,
d_v=64,
d_ff=200 * 4,
n_heads=4,
is_pre_trained=False,
base_embedding_dim=200,#dimension of base embedding
max_length=6,#max length of walks
num_gcn_layers=2,#number of gcn layers before bert
node_edge_composition_func="mult",#options for node and edge compostion, sub|circ_conv|mult|no_rel
get_embeddings=False,#indicate if need to get node vectors from BERT encoder output
fine_tuning_layer=False,):
super().__init__()
#initialize
self.g=G
self.num_layers = num_layers
self.d_model = d_model
self.max_length = max_length
self.get_embeddings = get_embeddings
self.node_edge_composition_func = node_edge_composition_func
self.fine_tuning_layer = fine_tuning_layer
self.no_nodes = G.num_nodes()
self.n_pred=args.n_pred
#pretraining use node2vec if not exist
if not os.path.exists(args.pretrained_embeddings):
print("Run Node2vec to obtain pre-trained node embeddings ...")
walks=[]
for _ in range(10):
nodes=list(G.nodes())
random.shuffle(nodes)
walk = dgl.sampling.node2vec_random_walk(G, torch.tensor(nodes), 1, 1, walk_length=80-1).tolist()#len=walk_length+1
walks.extend(walk)
walks = [list(map(str, walk)) for walk in walks]
from gensim.models import Word2Vec
model = Word2Vec(
walks,
# size=base_embedding_dim,
window=10,
min_count=0,
sg=1,
workers=8,
# iter=1,
)
model.wv.save_word2vec_format(args.pretrained_embeddings)
pretrained_node_embedding_tensor = self.load_pretrained_node2vec(
args.pretrained_embeddings, base_embedding_dim
)# (n_nodes*d_model)
#FIXME 暂时是用随机初始化,pretrain tensor是None
self.gcn_graph_encoder = GCNGraphEncoder(
G,
pretrained_node_embedding_tensor,
is_pre_trained,
base_embedding_dim,
max_length,
)
self.layers = torch.nn.ModuleList(
[EncoderLayer(d_model, d_k, d_v, d_ff, n_heads) for _ in range(num_layers)]
)#.cuda()
self.linear = torch.nn.Linear(d_model, d_model)#.cuda()
self.norm = torch.nn.LayerNorm(d_model)#.cuda()
# decoder
self.decoder = torch.nn.Linear(self.d_model, self.no_nodes)#.cuda()
def set_fine_tuning(self):
self.fine_tuning_layer = True
def GCN_MaskGeneration(self,subgraph_sequences):
n_pred=self.n_pred
masked_nodes = []#node id masked
masked_position = []# node index masked
for subgraph in subgraph_sequences:
num_nodes = subgraph.num_nodes()
mask_index = random.sample(range(num_nodes), n_pred)
subgraph_masked_nodes = []
subgraph_masked_position = []
for i in range(num_nodes):
if i in mask_index:
subgraph_masked_nodes.append(subgraph.ndata[dgl.NID][i])
subgraph_masked_position.append(i)
masked_nodes.append(subgraph_masked_nodes)
masked_position.append(subgraph_masked_position)
return torch.tensor(masked_nodes), torch.tensor(masked_position)
def forward(self, subgraph_list):
#subgraph list is a list of node subgraphs sampled by slice_sampler
if self.fine_tuning_layer:
masked_nodes=Variable(torch.LongTensor([[] for ii in range(len(subgraph_list))]))
else:
masked_nodes,masked_pos=self.GCN_MaskGeneration(subgraph_list)
# 将节点embedding和关系的embedding初始化,并采样得到
# context generation
node_emb = self.gcn_graph_encoder(subgraph_list, masked_nodes)
output = node_emb#.cuda()
enc_self_attn_mask = get_attn_pad_mask(subgraph_list,self.no_nodes,self.max_length+1)
# contextual translation
for layer in self.layers:
output, enc_self_attn = layer(output, enc_self_attn_mask)
try:
layer_output = torch.cat((layer_output, output.unsqueeze(1)), 1)#output embedding of each layer
except NameError: # FIXME - replaced bare except
layer_output = output.unsqueeze(1)#.cuda()
if self.fine_tuning_layer:
try:
att_output = torch.cat((att_output, enc_self_attn.unsqueeze(0)), 0)#output attention of each layer
except NameError: # FIXME - replaced bare except
att_output = enc_self_attn.unsqueeze(0)
# new added for ablation study
if self.num_layers == 0:
layer_output = output.unsqueeze(1)
att_output = "NA"
if self.fine_tuning_layer:
# print(output.size(), layer_output.size(), att_output.size())
return output, layer_output, att_output
else:
masked_pos = masked_pos[:,:,None].expand(
-1, -1, output.size(-1)
) # [batch_size, maxlen, d_model]
h_masked = torch.gather(
output, 1, masked_pos#.cuda()
) # masking position [batch_size, len, d_model]
h_masked = self.norm(gelu(self.linear(h_masked)))
pred_score = self.decoder(h_masked) # [batch_size, maxlen, n_vocab]
# print('check====', pred_score.size())
if self.get_embeddings:
return pred_score, masked_nodes, output
else:
return pred_score, masked_nodes
class SLiCEFinetuneLayer(torch.nn.Module):
@classmethod
def build_model_from_args(cls, args):
return cls(d_model=args.d_model,ft_d_ff=args.ft_d_ff,
ft_layer=args.ft_layer,ft_drop_rate=args.ft_drop_rate,
ft_input_option=args.ft_input_option, num_layers=args.num_layers)
def __init__(
self,
d_model,
ft_d_ff,
ft_layer,
ft_drop_rate,
ft_input_option,
num_layers,
):
super().__init__()
self.d_model = d_model
self.ft_layer = ft_layer
self.ft_input_option = ft_input_option
self.num_layers = num_layers
if ft_input_option in ["last", "last4_sum"]:
cnt_layers = 1
elif ft_input_option in ["last4_cat"]:
cnt_layers = 4
if self.num_layers == 0:
cnt_layers = 1
if self.ft_layer == "linear":
self.ft_decoder = torch.nn.Linear(d_model * cnt_layers, d_model)#.cuda()
elif self.ft_layer == "ffn":
self.ffn1 = torch.nn.Linear(d_model * cnt_layers, ft_d_ff)#.cuda()
print(self.num_layers, cnt_layers, self.ffn1)
self.dropout = torch.nn.Dropout(ft_drop_rate)#.cuda()
self.ffn2 = torch.nn.Linear(ft_d_ff, d_model)#.cuda()
def forward(self, graphbert_layer_output):
"""
graphbert_output = batch_sz * [CLS, source, target, relation, SEP] *
[emb_size]
"""
if self.ft_input_option == "last":
# use the output from laster layer of graphbert
graphbert_output = graphbert_layer_output[:, -1, :, :].squeeze(1)
source_embedding = graphbert_output[:, 0, :].unsqueeze(1)
destination_embedding = graphbert_output[:, 1, :].unsqueeze(1)
else:
# concatenate the output from the last four last four layers
# add for ablation study
no_layers = graphbert_layer_output.size(1)
if no_layers == 1:
start_layer = 0
else:
start_layer = no_layers - 4
for ii in range(start_layer, no_layers):
source_embed = graphbert_layer_output[:, ii, 0, :].unsqueeze(1)
destination_embed = graphbert_layer_output[:, ii, 1, :].unsqueeze(1)
if self.ft_input_option == "last4_cat":
try:
source_embedding = torch.cat(
(source_embedding, source_embed), 2
)
destination_embedding = torch.cat(
(destination_embedding, destination_embed), 2
)
except:
source_embedding = source_embed
destination_embedding = destination_embed
elif self.ft_input_option == "last4_sum":
try:
source_embedding = torch.add(source_embedding, 1, source_embed)
destination_embedding = torch.add(
destination_embedding, 1, destination_embed
)
except:
source_embedding = source_embed
destination_embedding = destination_embed
# print(source_embedding.size(), destination_embedding.size())
if self.ft_layer == "linear":
src_embedding = self.ft_decoder(source_embedding)
dst_embedding = self.ft_decoder(destination_embedding)
elif self.ft_layer == "ffn":
src_embedding = torch.relu(self.dropout(self.ffn1(source_embedding)))
src_embedding = self.ffn2(src_embedding)
dst_embedding = torch.relu(self.dropout(self.ffn1(destination_embedding)))
dst_embedding = self.ffn2(dst_embedding)
dst_embedding = dst_embedding.transpose(1, 2)
pred_score = torch.bmm(src_embedding, dst_embedding).squeeze(1)
pred_score = torch.sigmoid(pred_score)
# print('check+++++', pred_score.size())
return pred_score, src_embedding, dst_embedding.transpose(1, 2)