-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathSimpleHGN.py
324 lines (282 loc) · 10.4 KB
/
SimpleHGN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import dgl
import torch
import torch.nn as nn
import dgl.function as Fn
import torch.nn.functional as F
from dgl.ops import edge_softmax
from dgl.nn.pytorch import TypedLinear
from ..utils import to_hetero_feat
from . import BaseModel, register_model
@register_model('SimpleHGN')
class SimpleHGN(BaseModel):
r"""
This is a model SimpleHGN from `Are we really making much progress? Revisiting, benchmarking, and
refining heterogeneous graph neural networks
<https://dl.acm.org/doi/pdf/10.1145/3447548.3467350>`__
The model extend the original graph attention mechanism in GAT by including edge type information into attention calculation.
Calculating the coefficient:
.. math::
\alpha_{ij} = \frac{exp(LeakyReLU(a^T[Wh_i||Wh_j||W_r r_{\psi(<i,j>)}]))}{\Sigma_{k\in\mathcal{E}}{exp(LeakyReLU(a^T[Wh_i||Wh_k||W_r r_{\psi(<i,k>)}]))}} \quad (1)
Residual connection including Node residual:
.. math::
h_i^{(l)} = \sigma(\Sigma_{j\in \mathcal{N}_i} {\alpha_{ij}^{(l)}W^{(l)}h_j^{(l-1)}} + h_i^{(l-1)}) \quad (2)
and Edge residual:
.. math::
\alpha_{ij}^{(l)} = (1-\beta)\alpha_{ij}^{(l)}+\beta\alpha_{ij}^{(l-1)} \quad (3)
Multi-heads:
.. math::
h^{(l+1)}_j = \parallel^M_{m = 1}h^{(l + 1, m)}_j \quad (4)
Residual:
.. math::
h^{(l+1)}_j = h^{(l)}_j + \parallel^M_{m = 1}h^{(l + 1, m)}_j \quad (5)
Parameters
----------
edge_dim: int
the edge dimension
num_etypes: int
the number of the edge type
in_dim: int
the input dimension
hidden_dim: int
the output dimension
num_classes: int
the number of the output classes
num_layers: int
the number of layers we used in the computing
heads: list
the list of the number of heads in each layer
feat_drop: float
the feature drop rate
negative_slope: float
the negative slope used in the LeakyReLU
residual: boolean
if we need the residual operation
beta: float
the hyperparameter used in edge residual
ntypes: list
the list of node type
"""
@classmethod
def build_model_from_args(cls, args, hg):
heads = [args.num_heads] * args.num_layers + [1]
return cls(args.edge_dim,
len(hg.etypes),
[args.hidden_dim],
args.hidden_dim // args.num_heads,
args.out_dim,
args.num_layers,
heads,
args.feats_drop_rate,
args.slope,
True,
args.beta,
hg.ntypes
)
def __init__(self, edge_dim, num_etypes, in_dim, hidden_dim, num_classes,
num_layers, heads, feat_drop, negative_slope,
residual, beta, ntypes):
super(SimpleHGN, self).__init__()
self.ntypes = ntypes
self.num_layers = num_layers
self.hgn_layers = nn.ModuleList()
self.activation = F.elu
# input projection (no residual)
self.hgn_layers.append(
SimpleHGNConv(
edge_dim,
in_dim[0],
hidden_dim,
heads[0],
num_etypes,
feat_drop,
negative_slope,
False,
self.activation,
beta=beta,
)
)
# hidden layers
for l in range(1, num_layers - 1): # noqa E741
# due to multi-head, the in_dim = hidden_dim * num_heads
self.hgn_layers.append(
SimpleHGNConv(
edge_dim,
hidden_dim * heads[l - 1],
hidden_dim,
heads[l],
num_etypes,
feat_drop,
negative_slope,
residual,
self.activation,
beta=beta,
)
)
# output projection
self.hgn_layers.append(
SimpleHGNConv(
edge_dim,
hidden_dim * heads[-2],
num_classes,
heads[-1],
num_etypes,
feat_drop,
negative_slope,
residual,
None,
beta=beta,
)
)
def forward(self, hg, h_dict):
"""
The forward part of the SimpleHGN.
Parameters
----------
hg : object
the dgl heterogeneous graph
h_dict: dict
the feature dict of different node types
Returns
-------
dict
The embeddings after the output projection.
"""
if hasattr(hg, 'ntypes'):
# full graph training,
with hg.local_scope():
hg.ndata['h'] = h_dict
g = dgl.to_homogeneous(hg, ndata = 'h')
h = g.ndata['h']
for l in range(self.num_layers): # noqa E741
h = self.hgn_layers[l](g, h, g.ndata['_TYPE'], g.edata['_TYPE'], True)
h = h.flatten(1)
h_dict = to_hetero_feat(h, g.ndata['_TYPE'], hg.ntypes)
else:
# for minibatch training, input h_dict is a tensor
h = h_dict
for layer, block in zip(self.hgn_layers, hg):
h = layer(block, h, block.ndata['_TYPE']['_N'], block.edata['_TYPE'], presorted=False)
h_dict = to_hetero_feat(h, block.ndata['_TYPE']['_N'][:block.num_dst_nodes()], self.ntypes)
return h_dict
@property
def to_homo_flag(self):
return True
class SimpleHGNConv(nn.Module):
r"""
The SimpleHGN convolution layer.
Parameters
----------
edge_dim: int
the edge dimension
num_etypes: int
the number of the edge type
in_dim: int
the input dimension
out_dim: int
the output dimension
num_heads: int
the number of heads
num_etypes: int
the number of edge type
feat_drop: float
the feature drop rate
negative_slope: float
the negative slope used in the LeakyReLU
residual: boolean
if we need the residual operation
activation: str
the activation function
beta: float
the hyperparameter used in edge residual
"""
def __init__(self, edge_dim, in_dim, out_dim, num_heads, num_etypes, feat_drop=0.0,
negative_slope=0.2, residual=True, activation=F.elu, beta=0.0):
super(SimpleHGNConv, self).__init__()
self.edge_dim = edge_dim
self.in_dim = in_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_etypes = num_etypes
self.edge_emb = nn.Parameter(torch.empty(size=(num_etypes, edge_dim)))
self.W = nn.Parameter(torch.FloatTensor(
in_dim, out_dim * num_heads))
self.W_r = TypedLinear(edge_dim, edge_dim * num_heads, num_etypes)
self.a_l = nn.Parameter(torch.empty(size=(1, num_heads, out_dim)))
self.a_r = nn.Parameter(torch.empty(size=(1, num_heads, out_dim)))
self.a_e = nn.Parameter(torch.empty(size=(1, num_heads, edge_dim)))
nn.init.xavier_uniform_(self.edge_emb, gain=1.414)
nn.init.xavier_uniform_(self.W, gain=1.414)
nn.init.xavier_uniform_(self.a_l.data, gain=1.414)
nn.init.xavier_uniform_(self.a_r.data, gain=1.414)
nn.init.xavier_uniform_(self.a_e.data, gain=1.414)
self.feat_drop = nn.Dropout(feat_drop)
self.leakyrelu = nn.LeakyReLU(negative_slope)
self.activation = activation
if residual:
self.residual = nn.Linear(in_dim, out_dim * num_heads)
else:
self.register_buffer("residual", None)
self.beta = beta
def forward(self, g, h, ntype, etype, presorted = False):
"""
The forward part of the SimpleHGNConv.
Parameters
----------
g : object
the dgl homogeneous graph
h: tensor
the original features of the graph
ntype: tensor
the node type of the graph
etype: tensor
the edge type of the graph
presorted: boolean
if the ntype and etype are preordered, default: ``False``
Returns
-------
tensor
The embeddings after aggregation.
"""
emb = self.feat_drop(h)
emb = torch.matmul(emb, self.W).view(-1, self.num_heads, self.out_dim)
emb[torch.isnan(emb)] = 0.0
edge_emb = self.W_r(self.edge_emb[etype], etype, presorted).view(-1,
self.num_heads, self.edge_dim)
row = g.edges()[0]
col = g.edges()[1]
h_l = (self.a_l * emb).sum(dim=-1)[row]
h_r = (self.a_r * emb).sum(dim=-1)[col]
h_e = (self.a_e * edge_emb).sum(dim=-1)
edge_attention = self.leakyrelu(h_l + h_r + h_e)
edge_attention = edge_softmax(g, edge_attention)
if 'alpha' in g.edata.keys():
res_attn = g.edata['alpha']
edge_attention = edge_attention * \
(1 - self.beta) + res_attn * self.beta
if self.num_heads == 1:
edge_attention = edge_attention[:, 0]
edge_attention = edge_attention.unsqueeze(1)
with g.local_scope():
emb = emb.permute(0, 2, 1).contiguous()
g.edata['alpha'] = edge_attention
g.srcdata['emb'] = emb
g.update_all(Fn.u_mul_e('emb', 'alpha', 'm'),
Fn.sum('m', 'emb'))
h_output = g.dstdata['emb'].view(-1, self.out_dim * self.num_heads)
# h_prime = []
# for i in range(self.num_heads):
# g.edata['alpha'] = edge_attention[:, i]
# g.srcdata.update({'emb': emb[i]})
# g.update_all(Fn.u_mul_e('emb', 'alpha', 'm'),
# Fn.sum('m', 'emb'))
# h_prime.append(g.ndata['emb'])
# h_output = torch.cat(h_prime, dim=1)
g.edata['alpha'] = edge_attention
if g.is_block:
h = h[:g.num_dst_nodes()]
if self.residual:
res = self.residual(h)
h_output += res
if self.activation is not None:
h_output = self.activation(h_output)
return h_output