-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathReadData.py
executable file
·60 lines (45 loc) · 2.17 KB
/
ReadData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Description:
# Demo code from the article:
# Deep learning based pupil model predicts time and wavelength dependent light responses
# Technical University of Darmstadt, Laboratory of Lighting Technology
# Published in Scientific Reports
# Link: www.nature.com/articles/s41598-020-79908-5
# GitHub Link: https://github.com/BZandi/DL-PupilModel
import numpy as np
import pandas as pd
import sys
import torch
pd.set_option('display.width', 1000)
pd.set_option('display.max_columns', 600)
np.set_printoptions(linewidth=200, edgeitems=4)
torch.set_printoptions(linewidth=200, edgeitems=4)
def Func_readDataIn(Variant):
DataDataFrame = pd.read_csv('A00_Data/TrainData_Many_Subject.csv')
print('Data loaded from csv')
[InputtLabels, TargetLabels] = shapeTrainData(Variant)
print('Features: ' + str(InputtLabels))
print('Target: ' + str(TargetLabels))
InputValues = DataDataFrame[InputtLabels]
TargetValues = DataDataFrame[TargetLabels]
InputValues = InputValues.values
TargetValues = TargetValues.values
InputValues = torch.from_numpy(InputValues).float()
TargetValues = torch.from_numpy(TargetValues).float()
return [InputValues, TargetValues]
def shapeTrainData(Variant):
# Input: Leuchtdichte, Farbort_x, Farbort_y
# Output: f_p, f_s, P_0, tp, ts, Delta_tp, Delta_ts, p1
# p2, p3, p4, p5, p6, p7, p8, p9, p10
if Variant == 1:
InputtLabels = ['Leuchtdichte', 'Farbort_x', 'Farbort_y']
TargetLabels = ['f_p', 'f_s', 'P_0', 'tp', 'ts', 'Delta_tp', 'Delta_ts',
'p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7', 'p8', 'p9', 'p10']
if Variant == 2:
InputtLabels = ['S_Signal', 'M_Signal', 'L_Signal', 'Melanopsin_Signal']
TargetLabels = ['f_p', 'f_s', 'P_0', 'tp', 'ts', 'Delta_tp', 'Delta_ts',
'p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7', 'p8', 'p9', 'p10']
if Variant == 3:
InputtLabels = ['Leuchtdichte', 'Farbort_x', 'Farbort_y', 'Melanopsin_Signal']
TargetLabels = ['f_p', 'f_s', 'P_0', 'tp', 'ts', 'Delta_tp', 'Delta_ts',
'p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7', 'p8', 'p9', 'p10']
return InputtLabels, TargetLabels