forked from mit-plv/koika
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRVCore.v
1066 lines (965 loc) · 44 KB
/
RVCore.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*! Implementation of our RISC-V core !*)
Require Import Koika.Frontend.
Require Import Coq.Lists.List.
Require Import Koika.Std.
Require Import rv.RVEncoding.
Require Import rv.Scoreboard.
Require Import rv.Multiplier.
Section RV32Helpers.
Context {reg_t: Type}.
Import ListNotations.
Definition imm_type :=
{| enum_name := "immType";
enum_members := ["ImmI"; "ImmS"; "ImmB"; "ImmU"; "ImmJ"];
enum_bitpatterns := vect_map (Bits.of_nat 3) [0; 1; 2; 3; 4]
|}%vect.
Definition decoded_sig :=
{| struct_name := "decodedInst";
struct_fields := ("valid_rs1", bits_t 1)
:: ("valid_rs2" , bits_t 1)
:: ("valid_rd" , bits_t 1)
:: ("legal" , bits_t 1)
:: ("inst" , bits_t 32)
:: ("immediateType" , maybe (enum_t imm_type))
:: nil |}.
Definition inst_field :=
{| struct_name := "instFields";
struct_fields := ("opcode", bits_t 7)
:: ("funct3" , bits_t 3)
:: ("funct7" , bits_t 7)
:: ("funct5" , bits_t 5)
:: ("funct2" , bits_t 2)
:: ("rd" , bits_t 5)
:: ("rs1" , bits_t 5)
:: ("rs2" , bits_t 5)
:: ("rs3" , bits_t 5)
:: ("immI" , bits_t 32)
:: ("immS" , bits_t 32)
:: ("immB" , bits_t 32)
:: ("immU" , bits_t 32)
:: ("immJ" , bits_t 32)
:: ("csr" , bits_t 12)
:: nil
|}.
Definition getFields : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun getFields (inst : bits_t 32) : struct_t inst_field =>
let res := struct inst_field
{ opcode := inst[|5`d0| :+ 7];
funct3 := inst[|5`d12| :+ 3];
funct7 := inst[|5`d25| :+ 7];
funct5 := inst[|5`d27| :+ 5];
funct2 := inst[|5`d25| :+ 2];
rd := inst[|5`d7| :+ 5];
rs1 := inst[|5`d15| :+ 5];
rs2 := inst[|5`d20| :+ 5];
rs3 := inst[|5`d27| :+ 5];
immI := {signExtend 12 20}(inst[|5`d20| :+ 12]);
immS := {signExtend 12 20}(inst[|5`d25|:+ 7] ++ inst[|5`d7| :+ 5]);
immB := {signExtend 13 19}
(inst[|5`d31|]
++ inst[|5`d7|]
++ inst[|5`d25| :+ 6]
++ inst[|5`d8| :+ 4]
++ |1`d0|);
immU := (inst[|5`d12| :+ 20]
++ |12`d0|);
immJ := {signExtend 21 11}(inst[|5`d31|]
++ inst[|5`d12| :+ 8]
++ inst[|5`d20|]
++ inst[|5`d21|:+10]
++ |1`d0|);
csr := (inst[|5`d20| :+ 12]) } in
res
}}.
Definition isLegalInstruction : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun isLegalInstruction (inst : bits_t 32) : bits_t 1 =>
let fields := getFields (inst) in
match get(fields, opcode) with
| #opcode_LOAD =>
match get(fields, funct3) with
| #funct3_LB => Ob~1
| #funct3_LH => Ob~1
| #funct3_LW => Ob~1
| #funct3_LBU => Ob~1
| #funct3_LHU => Ob~1
return default: Ob~0
end
| #opcode_OP_IMM =>
match get(fields,funct3) with
| #funct3_ADD => Ob~1 (* SUB is the same funct3*)
| #funct3_SLT => Ob~1
| #funct3_SLTU => Ob~1
| #funct3_XOR => Ob~1
| #funct3_OR => Ob~1
| #funct3_AND => Ob~1
| #funct3_SLL =>
(get(fields,funct7)[|3`d1| :+ 6] == Ob~0~0~0~0~0~0)
&& (get(fields,funct7)[|3`d0|] == Ob~0)
| #funct3_SRL =>
((get(fields,funct7)[|3`d1| :+ 6] == Ob~0~0~0~0~0~0)
|| (get(fields,funct7)[|3`d1| :+ 6] == Ob~0~1~0~0~0~0))
&& get(fields,funct7)[|3`d0|] == Ob~0 (* All the funct3_SR* are the same *)
return default: Ob~0
end
| #opcode_AUIPC => Ob~1
| #opcode_STORE =>
match get(fields, funct3) with
| #funct3_SB => Ob~1
| #funct3_SH => Ob~1
| #funct3_SW => Ob~1
return default: Ob~0
end
| #opcode_OP =>
match get(fields,funct3) with
| #funct3_ADD => (get(fields,funct7) == Ob~0~0~0~0~0~0~0) ||
(get(fields,funct7) == Ob~0~1~0~0~0~0~0) ||
get(fields, funct7) == Ob~0~0~0~0~0~0~1
| #funct3_SRL => (get(fields,funct7) == Ob~0~0~0~0~0~0~0) || get(fields,funct7) == Ob~0~1~0~0~0~0~0
| #funct3_SLL => get(fields,funct7) == Ob~0~0~0~0~0~0~0
| #funct3_SLT => get(fields,funct7) == Ob~0~0~0~0~0~0~0
| #funct3_SLTU => get(fields,funct7) == Ob~0~0~0~0~0~0~0
| #funct3_XOR => get(fields,funct7) == Ob~0~0~0~0~0~0~0
| #funct3_OR => get(fields,funct7) == Ob~0~0~0~0~0~0~0
| #funct3_AND => get(fields,funct7) == Ob~0~0~0~0~0~0~0
return default: Ob~0
end
| #opcode_LUI => Ob~1
| #opcode_BRANCH =>
match get(fields,funct3) with
| #funct3_BEQ => Ob~1
| #funct3_BNE => Ob~1
| #funct3_BLT => Ob~1
| #funct3_BGE => Ob~1
| #funct3_BLTU => Ob~1
| #funct3_BGEU => Ob~1
return default: Ob~0
end
| #opcode_JALR => get(fields,funct3) == Ob~0~0~0
| #opcode_JAL => Ob~1
| #opcode_SYSTEM =>
match get(fields, funct3) with
| #funct3_PRIV =>
(get(fields, rd) == Ob~0~0~0~0~0)
&& (match (get(fields, funct7) ++ get(fields, rs2)) with
| Ob~0~0~0~0~0~0~0~0~0~0~0~0 => (get(fields, rs1) == Ob~0~0~0~0~0) (* // ECALL *)
| Ob~0~0~0~0~0~0~0~0~0~0~0~1 => (get(fields, rs1) == Ob~0~0~0~0~0) (* // EBREAK *)
| Ob~0~0~1~1~0~0~0~0~0~0~1~0 => (get(fields, rs1) == Ob~0~0~0~0~0) (* // MRET *)
| Ob~0~0~0~1~0~0~0~0~0~1~0~1 => (get(fields, rs1) == Ob~0~0~0~0~0) (* // WFI *)
return default: Ob~0
end)
return default: Ob~0
end
return default: Ob~0
end
}}.
Definition getImmediateType : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun getImmediateType (inst : bits_t 32) : maybe (enum_t imm_type) =>
match (inst[|5`d2|:+5]) with
| #opcode_LOAD[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmI })
| #opcode_OP_IMM[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmI })
| #opcode_JALR[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmI })
| #opcode_AUIPC[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmU })
| #opcode_LUI[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmU })
| #opcode_STORE[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmS })
| #opcode_BRANCH[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmB })
| #opcode_JAL[|3`d2|:+5] => {valid (enum_t imm_type)}(enum imm_type { ImmJ })
return default: {invalid (enum_t imm_type)}()
end
}}.
Definition usesRS1 : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun usesRS1 (inst : bits_t 32) : bits_t 1 =>
match (inst[Ob~0~0~0~1~0 :+ 5]) with
| Ob~1~1~0~0~0 => Ob~1 (* // bge, bne, bltu, blt, bgeu, beq *)
| Ob~0~0~0~0~0 => Ob~1 (* // lh, ld, lw, lwu, lbu, lhu, lb *)
| Ob~0~1~0~0~0 => Ob~1 (* // sh, sb, sw, sd *)
| Ob~0~1~1~0~0 => Ob~1 (* // sll, mulh, sltu, mulhu, slt, mulhsu, or, rem, xor, div, and, remu, srl, divu, sra, add, mul, sub *)
| Ob~1~1~0~0~1 => Ob~1 (* // jalr *)
| Ob~0~0~1~0~0 => Ob~1 (* // srli, srli, srai, srai, slli, slli, ori, sltiu, andi, slti, addi, xori *)
return default: Ob~0
end
}}.
Definition usesRS2 : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun usesRS2 (inst : bits_t 32) : bits_t 1 =>
match (inst[Ob~0~0~0~1~0 :+ 5]) with
| Ob~1~1~0~0~0 => Ob~1 (* // bge, bne, bltu, blt, bgeu, beq *)
| Ob~0~1~0~0~0 => Ob~1 (* // sh, sb, sw, sd *)
| Ob~0~1~1~0~0 => Ob~1 (* // sll, mulh, sltu, mulhu, slt, mulhsu, or, rem, xor, div, and, remu, srl, divu, sra, add, mul, sub *)
return default: Ob~0
end
}}.
Definition usesRD : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun usesRD (inst : bits_t 32) : bits_t 1 =>
match (inst[Ob~0~0~0~1~0 :+ 5]) with
| Ob~0~1~1~0~1 => Ob~1 (* // lui*)
| Ob~1~1~0~1~1 => Ob~1 (* // jal*)
| Ob~0~0~0~0~0 => Ob~1 (* // lh, ld, lw, lwu, lbu, lhu, lb*)
| Ob~0~1~1~0~0 => Ob~1 (* // sll, mulh, sltu, mulhu, slt, mulhsu, or, rem, xor, div, and, remu, srl, divu, sra, add, mul, sub*)
| Ob~1~1~0~0~1 => Ob~1 (* // jalr*)
| Ob~0~0~1~0~0 => Ob~1 (* // srli, srli, srai, srai, slli, slli, ori, sltiu, andi, slti, addi, xori*)
| Ob~0~0~1~0~1 => Ob~1 (* // auipc*)
return default: Ob~0
end
}}.
Definition decode_fun : UInternalFunction reg_t empty_ext_fn_t :=
{{ fun decode_fun (arg_inst : bits_t 32) : struct_t decoded_sig
=>
struct decoded_sig {
valid_rs1 := usesRS1 (arg_inst);
valid_rs2 := usesRS2 (arg_inst);
valid_rd := usesRD (arg_inst);
legal := isLegalInstruction (arg_inst);
inst := arg_inst;
immediateType := getImmediateType(arg_inst)
}
}}.
Definition getImmediate : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun getImmediate (dInst: struct_t decoded_sig) : bits_t 32 =>
let imm_type_v := get(dInst, immediateType) in
if (get(imm_type_v, valid) == Ob~1) then
let fields := getFields (get(dInst,inst)) in
match (get(imm_type_v, data)) with
| (enum imm_type { ImmI }) => get(fields, immI)
| (enum imm_type { ImmS }) => get(fields, immS)
| (enum imm_type { ImmB }) => get(fields, immB)
| (enum imm_type { ImmU }) => get(fields, immU)
| (enum imm_type { ImmJ }) => get(fields, immJ)
return default: |32`d0|
end
else
|32`d0|
}}.
Definition alu32 : UInternalFunction reg_t empty_ext_fn_t :=
{{ fun alu32 (funct3 : bits_t 3)
(funct7 : bits_t 7)
(a : bits_t 32)
(b : bits_t 32)
: bits_t 32 =>
let shamt := b[Ob~0~0~0~0~0 :+ 5] in
let inst_30 := funct7[|3`d5|] in
match funct3 with
| #funct3_ADD => if (inst_30 == Ob~1) then
a - b
else
a + b
| #funct3_SLL => a << shamt
| #funct3_SLT => zeroExtend(a <s b, 32)
| #funct3_SLTU => zeroExtend(a < b, 32)
| #funct3_XOR => a ^ b
| #funct3_SRL => if (inst_30 == Ob~1) then a >>> shamt else a >> shamt
| #funct3_OR => a || b
| #funct3_AND => a && b
return default: #(Bits.of_nat 32 0)
end
}}.
Definition execALU32 : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun execALU32 (inst : bits_t 32)
(rs1_val : bits_t 32)
(rs2_val : bits_t 32)
(imm_val : bits_t 32)
(pc : bits_t 32)
: bits_t 32 =>
let isLUI := (inst[|5`d2|] == Ob~1) && (inst[|5`d5|] == Ob~1) in
let isAUIPC := (inst[|5`d2|] == Ob~1) && (inst[|5`d5|] == Ob~0) in
let isIMM := (inst[|5`d5|] == Ob~0) in
let rd_val := |32`d0| in
(if (isLUI) then
set rd_val := imm_val
else if (isAUIPC) then
set rd_val := (pc + imm_val)
else
let alu_src1 := rs1_val in
let alu_src2 := if isIMM then imm_val else rs2_val in
let funct3 := get(getFields(inst), funct3) in
let funct7 := get(getFields(inst), funct7) in
let opcode := get(getFields(inst), opcode) in
if ((funct3 == #funct3_ADD) && isIMM) || (opcode == #opcode_BRANCH) then
(* // replace the instruction by an add *)
(set funct7 := #funct7_ADD)
else pass;
set rd_val := alu32(funct3, funct7, alu_src1, alu_src2));
rd_val
}}.
Definition control_result :=
{| struct_name := "control_result";
struct_fields := ("nextPC", bits_t 32)
:: ("taken" , bits_t 1)
:: nil |}.
Definition execControl32 : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun execControl32 (inst : bits_t 32)
(rs1_val : bits_t 32)
(rs2_val : bits_t 32)
(imm_val : bits_t 32)
(pc : bits_t 32)
: struct_t control_result =>
let isControl := inst[|5`d4| :+ 3] == Ob~1~1~0 in
let isJAL := (inst[|5`d2|] == Ob~1) && (inst[|5`d3|] == Ob~1) in
let isJALR := (inst[|5`d2|] == Ob~1) && (inst[|5`d3|] == Ob~0) in
let incPC := pc + |32`d4| in
let funct3 := get(getFields(inst), funct3) in
let taken := Ob~1 in (* // for JAL and JALR *)
let nextPC := incPC in
if (!isControl) then
set taken := Ob~0;
set nextPC := incPC
else
if (isJAL) then
set taken := Ob~1;
set nextPC := (pc + imm_val)
else
if (isJALR) then
set taken := Ob~1;
set nextPC := ((rs1_val + imm_val) && !|32`d1|)
else
((set taken := match (funct3) with
| #funct3_BEQ => (rs1_val == rs2_val)
| #funct3_BNE => rs1_val != rs2_val
| #funct3_BLT => rs1_val <s rs2_val
| #funct3_BGE => !(rs1_val <s rs2_val)
| #funct3_BLTU => (rs1_val < rs2_val)
| #funct3_BGEU => !(rs1_val < rs2_val)
return default: Ob~0
end);
if (taken) then
set nextPC := (pc + imm_val)
else
set nextPC := incPC);
struct control_result { taken := taken;
nextPC := nextPC }
}}.
End RV32Helpers.
Module Type RVParams.
Parameter NREGS : nat.
End RVParams.
Module RV32Core (RVP: RVParams) (Multiplier: MultiplierInterface).
Import ListNotations.
Import RVP.
Definition mem_req :=
{| struct_name := "mem_req";
struct_fields := [("byte_en" , bits_t 4);
("addr" , bits_t 32);
("data" , bits_t 32)] |}.
Definition mem_resp :=
{| struct_name := "mem_resp";
struct_fields := [("byte_en", bits_t 4); ("addr", bits_t 32); ("data", bits_t 32)] |}.
Definition fetch_bookkeeping :=
{| struct_name := "fetch_bookkeeping";
struct_fields := [("pc" , bits_t 32);
("ppc" , bits_t 32);
("epoch" , bits_t 1)] |}.
Definition decode_bookkeeping :=
{| struct_name := "decode_bookkeeping";
struct_fields := [("pc" , bits_t 32);
("ppc" , bits_t 32);
("epoch" , bits_t 1);
("dInst" , struct_t decoded_sig);
("rval1" , bits_t 32);
("rval2" , bits_t 32)] |}.
Definition execute_bookkeeping :=
{| struct_name := "execute_bookkeeping";
struct_fields := [("isUnsigned" , bits_t 1);
("size", bits_t 2);
("offset", bits_t 2);
("newrd" , bits_t 32);
("dInst" , struct_t decoded_sig)]|}.
(* Specialize interfaces *)
Module FifoMemReq <: Fifo.
Definition T:= struct_t mem_req.
End FifoMemReq.
Module MemReq := Fifo1Bypass FifoMemReq.
Module FifoMemResp <: Fifo.
Definition T:= struct_t mem_resp.
End FifoMemResp.
Module MemResp := Fifo1 FifoMemResp.
Module FifoUART <: Fifo.
Definition T:= bits_t 8.
End FifoUART.
Module UARTReq := Fifo1Bypass FifoUART.
Module UARTResp := Fifo1 FifoUART.
Module FifoFetch <: Fifo.
Definition T:= struct_t fetch_bookkeeping.
End FifoFetch.
Module fromFetch := Fifo1 FifoFetch.
Module waitFromFetch := Fifo1 FifoFetch.
Module FifoDecode <: Fifo.
Definition T:= struct_t decode_bookkeeping.
End FifoDecode.
Module fromDecode := Fifo1 FifoDecode.
Module FifoExecute <: Fifo.
Definition T:= struct_t execute_bookkeeping.
End FifoExecute.
Module fromExecute := Fifo1 FifoExecute.
Module RfParams <: RfPow2_sig.
Definition idx_sz := log2 NREGS.
Definition T := bits_t 32.
Definition init := Bits.zeroes 32.
Definition read_style := Scoreboard.read_style 32.
Definition write_style := Scoreboard.write_style.
End RfParams.
Module Rf := RfPow2 RfParams.
Module ScoreboardParams <: Scoreboard_sig.
Definition idx_sz := log2 NREGS.
Definition maxScore := 3.
End ScoreboardParams.
Module Scoreboard := Scoreboard ScoreboardParams.
(* Declare state *)
Inductive reg_t :=
| toIMem (state: MemReq.reg_t)
| fromIMem (state: MemResp.reg_t)
| toDMem (state: MemReq.reg_t)
| fromDMem (state: MemResp.reg_t)
| f2d (state: fromFetch.reg_t)
| f2dprim (state: waitFromFetch.reg_t)
| d2e (state: fromDecode.reg_t)
| e2w (state: fromExecute.reg_t)
| rf (state: Rf.reg_t)
| mulState (state: Multiplier.reg_t)
| scoreboard (state: Scoreboard.reg_t)
| cycle_count
| instr_count
| pc
| epoch.
(* State type *)
Definition R idx :=
match idx with
| toIMem r => MemReq.R r
| fromIMem r => MemResp.R r
| toDMem r => MemReq.R r
| fromDMem r => MemResp.R r
| f2d r => fromFetch.R r
| f2dprim r => waitFromFetch.R r
| d2e r => fromDecode.R r
| e2w r => fromExecute.R r
| rf r => Rf.R r
| scoreboard r => Scoreboard.R r
| mulState r => Multiplier.R r
| pc => bits_t 32
| cycle_count => bits_t 32
| instr_count => bits_t 32
| epoch => bits_t 1
end.
(* Initial values *)
Definition r idx : R idx :=
match idx with
| rf s => Rf.r s
| toIMem s => MemReq.r s
| fromIMem s => MemResp.r s
| toDMem s => MemReq.r s
| fromDMem s => MemResp.r s
| f2d s => fromFetch.r s
| f2dprim s => waitFromFetch.r s
| d2e s => fromDecode.r s
| e2w s => fromExecute.r s
| scoreboard s => Scoreboard.r s
| mulState s => Multiplier.r s
| pc => Bits.zero
| cycle_count => Bits.zero
| instr_count => Bits.zero
| epoch => Bits.zero
end.
(* External functions, used to model memory *)
Inductive memory := imem | dmem.
Inductive ext_fn_t :=
(* Send a read or write to memory *)
| ext_mem (m: memory)
(* Read from host *)
| ext_uart_read
(* Write to host *)
| ext_uart_write
(* Set led *)
| ext_led
(* Get host id *)
| ext_host_id
(* Stop execution *)
| ext_finish.
Definition mem_input :=
{| struct_name := "mem_input";
struct_fields := [("get_ready", bits_t 1);
("put_valid", bits_t 1);
("put_request", struct_t mem_req)] |}.
Definition mem_output :=
{| struct_name := "mem_output";
struct_fields := [("get_valid", bits_t 1);
("put_ready", bits_t 1);
("get_response", struct_t mem_resp)] |}.
Definition uart_input := maybe (bits_t 8).
Definition uart_output := maybe (bits_t 8).
Definition led_input := maybe (bits_t 1).
Definition finish_input := maybe (bits_t 8).
Definition host_id :=
{| enum_name := "hostID";
enum_members := ["FPGA"; "Verilator"; "Cuttlesim"];
enum_bitpatterns := vect_map (Bits.of_nat 8) [128; 1; 0]
|}%vect.
Definition Sigma (fn: ext_fn_t) :=
match fn with
| ext_mem _ => {$ struct_t mem_input ~> struct_t mem_output $}
| ext_uart_read => {$ bits_t 1 ~> uart_output $}
| ext_uart_write => {$ uart_input ~> bits_t 1 $}
| ext_led => {$ led_input ~> bits_t 1 $}
| ext_host_id => {$ bits_t 1 ~> enum_t host_id $}
| ext_finish => {$ finish_input ~> bits_t 1 $}
end.
Definition fetch : uaction reg_t ext_fn_t :=
{{
let pc := read1(pc) in
let req := struct mem_req {
byte_en := |4`d0|; (* Load *)
addr := pc;
data := |32`d0| } in
let fetch_bookkeeping := struct fetch_bookkeeping {
pc := pc;
ppc := pc + |32`d4|;
epoch := read1(epoch)
} in
toIMem.(MemReq.enq)(req);
write1(pc, pc + |32`d4|);
f2d.(fromFetch.enq)(fetch_bookkeeping)
}}.
Definition wait_imem : uaction reg_t ext_fn_t :=
{{
let fetched_bookkeeping := f2d.(fromFetch.deq)() in
f2dprim.(waitFromFetch.enq)(fetched_bookkeeping)
}}.
Definition sliceReg : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun sliceReg (idx: bits_t 5) : bits_t (log2 NREGS) =>
idx[|3`d0| :+ log2 NREGS]
}}.
(* This rule is interesting because maybe we want to write it *)
(* differently than Bluespec if we care about simulation *)
(* performance. Moreover, we could read unconditionaly to avoid potential *)
(* muxing on the input, TODO check if it changes anything *)
Definition decode : uaction reg_t ext_fn_t :=
{{
let instr := fromIMem.(MemResp.deq)() in
let instr := get(instr,data) in
let fetched_bookkeeping := f2dprim.(waitFromFetch.deq)() in
let decodedInst := decode_fun(instr) in
when (get(fetched_bookkeeping, epoch) == read1(epoch)) do
(let rs1_idx := get(getFields(instr), rs1) in
let rs2_idx := get(getFields(instr), rs2) in
let score1 := scoreboard.(Scoreboard.search)(sliceReg(rs1_idx)) in
let score2 := scoreboard.(Scoreboard.search)(sliceReg(rs2_idx)) in
guard (score1 == Ob~0~0 && score2 == Ob~0~0);
(when (get(decodedInst, valid_rd)) do
let rd_idx := get(getFields(instr), rd) in
scoreboard.(Scoreboard.insert)(sliceReg(rd_idx)));
let rs1 := rf.(Rf.read_1)(sliceReg(rs1_idx)) in
let rs2 := rf.(Rf.read_1)(sliceReg(rs2_idx)) in
let decode_bookkeeping := struct decode_bookkeeping {
pc := get(fetched_bookkeeping, pc);
ppc := get(fetched_bookkeeping, ppc);
epoch := get(fetched_bookkeeping, epoch);
dInst := decodedInst;
rval1 := rs1;
rval2 := rs2
} in
d2e.(fromDecode.enq)(decode_bookkeeping))
}}.
(* Useful for debugging *)
Arguments Var {pos_t var_t fn_name_t reg_t ext_fn_t R Sigma sig} k {tau m} : assert.
Definition isMemoryInst : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun isMemoryInst (dInst: struct_t decoded_sig) : bits_t 1 =>
(get(dInst,inst)[|5`d6|] == Ob~0) && (get(dInst,inst)[|5`d3|:+2] == Ob~0~0)
}}.
Definition isMultiplyInst : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun isMultiplyInst (dInst: struct_t decoded_sig) : bits_t 1 =>
mulState.(Multiplier.enabled)() &&
let fields := getFields(get(dInst, inst)) in
(get(fields, funct7) == #funct7_MUL) &&
(get(fields, funct3) == #funct3_MUL) &&
(get(fields, opcode) == #opcode_OP)
}}.
Definition isControlInst : UInternalFunction reg_t empty_ext_fn_t :=
{{
fun isControlInst (dInst: struct_t decoded_sig) : bits_t 1 =>
get(dInst,inst)[|5`d4| :+ 3] == Ob~1~1~0
}}.
Definition step_multiplier : uaction reg_t ext_fn_t :=
{{
mulState.(Multiplier.step)()
}}.
Definition execute : uaction reg_t ext_fn_t :=
{{
let decoded_bookkeeping := d2e.(fromDecode.deq)() in
if get(decoded_bookkeeping, epoch) == read0(epoch) then
(* By then we guarantee that this instruction is correct-path *)
let dInst := get(decoded_bookkeeping, dInst) in
if get(dInst, legal) == Ob~0 then
(* Always say that we had a misprediction in this case for
simplicity *)
write0(epoch, read0(epoch)+Ob~1);
write0(pc, |32`d0|)
else
(let fInst := get(dInst, inst) in
let funct3 := get(getFields(fInst), funct3) in
let rs1_val := get(decoded_bookkeeping, rval1) in
let rs2_val := get(decoded_bookkeeping, rval2) in
(* Use the multiplier module or the ALU *)
let imm := getImmediate(dInst) in
let pc := get(decoded_bookkeeping, pc) in
let data := execALU32(fInst, rs1_val, rs2_val, imm, pc) in
let isUnsigned := Ob~0 in
let size := funct3[|2`d0| :+ 2] in
let addr := rs1_val + imm in
let offset := addr[|5`d0| :+ 2] in
if isMemoryInst(dInst) then
let shift_amount := offset ++ |3`d0| in
let is_write := fInst[|5`d5|] == Ob~1 in
let byte_en :=
if is_write then
match size with
| Ob~0~0 => Ob~0~0~0~1
| Ob~0~1 => Ob~0~0~1~1
| Ob~1~0 => Ob~1~1~1~1
return default: fail(4)
end << offset
else Ob~0~0~0~0 in
set data := rs2_val << shift_amount;
set addr := addr[|5`d2| :+ 30 ] ++ |2`d0|;
set isUnsigned := funct3[|2`d2|];
toDMem.(MemReq.enq)(struct mem_req {
byte_en := byte_en; addr := addr; data := data })
else if (isControlInst(dInst)) then
set data := (pc + |32`d4|) (* For jump and link *)
else if (isMultiplyInst(dInst)) then
mulState.(Multiplier.enq)(rs1_val, rs2_val)
else
pass;
let controlResult := execControl32(fInst, rs1_val, rs2_val, imm, pc) in
let nextPc := get(controlResult,nextPC) in
if nextPc != get(decoded_bookkeeping, ppc) then
write0(epoch, read0(epoch)+Ob~1);
write0(pc, nextPc)
else
pass;
let execute_bookkeeping := struct execute_bookkeeping {
isUnsigned := isUnsigned;
size := size;
offset := offset;
newrd := data;
dInst := get(decoded_bookkeeping, dInst)
} in
e2w.(fromExecute.enq)(execute_bookkeeping))
else
pass
}}.
Definition writeback : uaction reg_t ext_fn_t :=
{{
let execute_bookkeeping := e2w.(fromExecute.deq)() in
let dInst := get(execute_bookkeeping, dInst) in
let data := get(execute_bookkeeping, newrd) in
let fields := getFields(get(dInst, inst)) in
write0(instr_count, read0(instr_count)+|32`d1|);
if isMemoryInst(dInst) then (* // write_val *)
(* Byte enable shifting back *)
let resp := fromDMem.(MemResp.deq)() in
let mem_data := get(resp,data) in
set mem_data := mem_data >> (get(execute_bookkeeping,offset) ++ Ob~0~0~0);
match (get(execute_bookkeeping,isUnsigned)++get(execute_bookkeeping,size)) with
| Ob~0~0~0 => set data := {signExtend 8 24}(mem_data[|5`d0|:+8])
| Ob~0~0~1 => set data := {signExtend 16 16}(mem_data[|5`d0|:+16])
| Ob~1~0~0 => set data := zeroExtend(mem_data[|5`d0|:+8],32)
| Ob~1~0~1 => set data := zeroExtend(mem_data[|5`d0|:+16],32)
| Ob~0~1~0 => set data := mem_data (* Load Word *)
return default: fail (* Load Double or Signed Word *)
end
else if isMultiplyInst(dInst) then
set data := mulState.(Multiplier.deq)()[|6`d0| :+ 32]
else
pass;
if get(dInst,valid_rd) then
let rd_idx := get(fields,rd) in
scoreboard.(Scoreboard.remove)(sliceReg(rd_idx));
if (rd_idx == |5`d0|)
then pass
else rf.(Rf.write_0)(sliceReg(rd_idx),data)
else
pass
}}.
Definition MMIO_UART_ADDRESS := Ob~0~1~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0.
Definition MMIO_LED_ADDRESS := Ob~0~1~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~1~0~0.
Definition MMIO_EXIT_ADDRESS := Ob~0~1~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~1~0~0~0~0~0~0~0~0~0~0~0~0.
Definition MMIO_HOST_ID_ADDRESS := Ob~0~1~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~1~0~0~0~0~0~0~0~0~0~1~0~0.
Definition memoryBus (m: memory) : UInternalFunction reg_t ext_fn_t :=
{{ fun memoryBus (get_ready: bits_t 1) (put_valid: bits_t 1) (put_request: struct_t mem_req) : struct_t mem_output =>
`match m with
| imem => {{ extcall (ext_mem m) (struct mem_input {
get_ready := get_ready;
put_valid := put_valid;
put_request := put_request }) }}
| dmem => {{ let addr := get(put_request, addr) in
let byte_en := get(put_request, byte_en) in
let is_write := byte_en == Ob~1~1~1~1 in
let is_uart := addr == #MMIO_UART_ADDRESS in
let is_uart_read := is_uart && !is_write in
let is_uart_write := is_uart && is_write in
let is_led := addr == #MMIO_LED_ADDRESS in
let is_led_write := is_led && is_write in
let is_finish := addr == #MMIO_EXIT_ADDRESS in
let is_finish_write := is_finish && is_write in
let is_host_id := addr == #MMIO_HOST_ID_ADDRESS in
let is_host_id_read := is_host_id && !is_write in
let is_mem := !is_uart && !is_led && !is_finish && !is_host_id in
if is_uart_write then
let char := get(put_request, data)[|5`d0| :+ 8] in
let may_run := get_ready && put_valid && is_uart_write in
let ready := extcall ext_uart_write (struct (Maybe (bits_t 8)) {
valid := may_run; data := char }) in
struct mem_output { get_valid := may_run && ready;
put_ready := may_run && ready;
get_response := struct mem_resp {
byte_en := byte_en; addr := addr;
data := |32`d0| } }
else if is_uart_read then
let may_run := get_ready && put_valid && is_uart_read in
let opt_char := extcall ext_uart_read (may_run) in
let ready := get(opt_char, valid) in
struct mem_output { get_valid := may_run && ready;
put_ready := may_run && ready;
get_response := struct mem_resp {
byte_en := byte_en; addr := addr;
data := zeroExtend(get(opt_char, data), 32) } }
else if is_led then
let on := get(put_request, data)[|5`d0|] in
let may_run := get_ready && put_valid && is_led_write in
let current := extcall ext_led (struct (Maybe (bits_t 1)) {
valid := may_run; data := on }) in
let ready := Ob~1 in
struct mem_output { get_valid := may_run && ready;
put_ready := may_run && ready;
get_response := struct mem_resp {
byte_en := byte_en; addr := addr;
data := zeroExtend(current, 32) } }
else if is_finish then
let char := get(put_request, data)[|5`d0| :+ 8] in
let may_run := get_ready && put_valid && is_finish_write in
let response := extcall ext_finish (struct (Maybe (bits_t 8)) {
valid := may_run; data := char }) in
let ready := Ob~1 in
struct mem_output { get_valid := may_run && ready;
put_ready := may_run && ready;
get_response := struct mem_resp {
byte_en := byte_en; addr := addr;
data := zeroExtend(response, 32) } }
else if is_host_id then
let may_run := get_ready && put_valid && is_host_id_read in
let response := pack(extcall ext_host_id (Ob~1)) in
let ready := Ob~1 in
struct mem_output { get_valid := may_run && ready;
put_ready := may_run && ready;
get_response := struct mem_resp {
byte_en := byte_en; addr := addr;
data := zeroExtend(response, 32) } }
else
extcall (ext_mem m) (struct mem_input {
get_ready := get_ready && is_mem;
put_valid := put_valid && is_mem;
put_request := put_request }) }}
end` }}.
Definition mem (m: memory) : uaction reg_t ext_fn_t :=
let fromMem := match m with imem => fromIMem | dmem => fromDMem end in
let toMem := match m with imem => toIMem | dmem => toDMem end in
{{
let get_ready := fromMem.(MemResp.can_enq)() in
let put_request_opt := toMem.(MemReq.peek)() in
let put_request := get(put_request_opt, data) in
let put_valid := get(put_request_opt, valid) in
let mem_out := {memoryBus m}(get_ready, put_valid, put_request) in
(when (get_ready && get(mem_out, get_valid)) do fromMem.(MemResp.enq)(get(mem_out, get_response)));
(when (put_valid && get(mem_out, put_ready)) do ignore(toMem.(MemReq.deq)()))
}}.
Definition tick : uaction reg_t ext_fn_t :=
{{
write0(cycle_count, read0(cycle_count) + |32`d1|)
}}.
Definition rv_register_name {n} (v: Vect.index n) :=
match index_to_nat v with
| 0 => "x00_zero" (* hardwired zero *)
| 1 => "x01_ra" (* caller-saved, return address *)
| 2 => "x02_sp" (* callee-saved, stack pointer *)
| 3 => "x03_gp" (* global pointer *)
| 4 => "x04_tp" (* thread pointer *)
| 5 => "x05_t0" (* caller-saved, temporary registers *)
| 6 => "x06_t1" (* caller-saved, temporary registers *)
| 7 => "x07_t2" (* caller-saved, temporary registers *)
| 8 => "x08_s0_fp" (* callee-saved, saved register / frame pointer *)
| 9 => "x09_s1" (* callee-saved, saved register *)
| 10 => "x10_a0" (* caller-saved, function arguments / return values *)
| 11 => "x11_a1" (* caller-saved, function arguments / return values *)
| 12 => "x12_a2" (* caller-saved, function arguments *)
| 13 => "x13_a3" (* caller-saved, function arguments *)
| 14 => "x14_a4" (* caller-saved, function arguments *)
| 15 => "x15_a5" (* caller-saved, function arguments *)
| 16 => "x16_a6" (* caller-saved, function arguments *)
| 17 => "x17_a7" (* caller-saved, function arguments *)
| 18 => "x18_s2" (* callee-saved, saved registers *)
| 19 => "x19_s3" (* callee-saved, saved registers *)
| 20 => "x20_s4" (* callee-saved, saved registers *)
| 21 => "x21_s5" (* callee-saved, saved registers *)
| 22 => "x22_s6" (* callee-saved, saved registers *)
| 23 => "x23_s7" (* callee-saved, saved registers *)
| 24 => "x24_s8" (* callee-saved, saved registers *)
| 25 => "x25_s9" (* callee-saved, saved registers *)
| 26 => "x26_s10" (* callee-saved, saved registers *)
| 27 => "x27_s11" (* callee-saved, saved registers *)
| 28 => "x28_t3" (* caller-saved, temporary registers *)
| 29 => "x29_t4" (* caller-saved, temporary registers *)
| 30 => "x30_t5" (* caller-saved, temporary registers *)
| 31 => "x31_t6" (* caller-saved, temporary registers *)
| _ => ""
end.
Instance FiniteType_toIMem : FiniteType MemReq.reg_t := _.
Instance FiniteType_fromIMem : FiniteType MemResp.reg_t := _.
Instance FiniteType_toDMem : FiniteType MemReq.reg_t := _.
Instance FiniteType_fromDMem : FiniteType MemResp.reg_t := _.
Instance FiniteType_f2d : FiniteType fromFetch.reg_t := _.
Instance FiniteType_d2e : FiniteType fromDecode.reg_t := _.
Instance FiniteType_e2w : FiniteType fromExecute.reg_t := _.
Instance Show_rf : Show (Rf.reg_t) :=
{| show '(Rf.rData v) := rv_register_name v |}.
Instance Show_scoreboard : Show (Scoreboard.reg_t) :=
{| show '(Scoreboard.Scores (Scoreboard.Rf.rData v)) := rv_register_name v |}.
Existing Instance Multiplier.Show_reg_t.
Instance Show_reg_t : Show reg_t := _.
Instance Show_ext_fn_t : Show ext_fn_t := _.
Definition rv_ext_fn_sim_specs fn :=
{| efs_name := show fn;
efs_method := match fn with
| ext_finish => true
| _ => false
end |}.
Definition rv_ext_fn_rtl_specs fn :=
{| efr_name := show fn;
efr_internal := match fn with
| ext_host_id | ext_finish => true
| _ => false
end |}.
End RV32Core.
Inductive rv_rules_t :=
| Fetch
| Decode
| Execute
| Writeback
| WaitImem
| Imem
| Dmem
| StepMultiplier
| Tick.
Definition rv_external (rl: rv_rules_t) := false.
Module Type Core.
Parameter _reg_t : Type.
Parameter _ext_fn_t : Type.
Parameter R : _reg_t -> type.
Parameter Sigma : _ext_fn_t -> ExternalSignature.
Parameter r : forall reg, R reg.
Parameter rv_rules : rv_rules_t -> rule R Sigma.
Parameter FiniteType_reg_t : FiniteType _reg_t.
Parameter Show_reg_t : Show _reg_t.
Parameter Show_ext_fn_t : Show _ext_fn_t.
Parameter rv_ext_fn_sim_specs : _ext_fn_t -> ext_fn_sim_spec.
Parameter rv_ext_fn_rtl_specs : _ext_fn_t -> ext_fn_rtl_spec.
End Core.
Module RV32IParams <: RVParams.
Definition NREGS := 32.
End RV32IParams.
(* TC_native adds overhead but makes typechecking large rules faster *)
Ltac _tc_strategy ::= exact TC_native.
Module Mul32Params <: Multiplier_sig.
Definition n := 32.
End Mul32Params.
Module RV32I <: Core.
Module Multiplier := ShiftAddMultiplier Mul32Params.
Include (RV32Core RV32IParams Multiplier).
Definition _reg_t := reg_t.
Definition _ext_fn_t := ext_fn_t.
Definition tc_fetch := tc_rule R Sigma fetch.
Definition tc_wait_imem := tc_rule R Sigma wait_imem.
Definition tc_decode := tc_rule R Sigma decode.
Definition tc_execute := tc_rule R Sigma execute.
Definition tc_writeback := tc_rule R Sigma writeback.
Definition tc_step_multiplier := tc_rule R Sigma step_multiplier.
Definition tc_imem := tc_rule R Sigma (mem imem).
Definition tc_dmem := tc_rule R Sigma (mem dmem).
Definition tc_tick := tc_rule R Sigma tick.
Definition rv_rules (rl: rv_rules_t) : rule R Sigma :=
match rl with
| Fetch => tc_fetch
| Decode => tc_decode
| Execute => tc_execute
| Writeback => tc_writeback
| WaitImem => tc_wait_imem
| Imem => tc_imem
| Dmem => tc_dmem
| StepMultiplier => tc_step_multiplier
| Tick => tc_tick
end.
Instance FiniteType_rf : FiniteType Rf.reg_t := _.