-
Notifications
You must be signed in to change notification settings - Fork 4
/
corpusClean.py
214 lines (177 loc) · 8.79 KB
/
corpusClean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# -*- coding: utf-8 -*-
# -*- author: JeremySun -*-
# -*- dating: 20/1/9 -*-
# 模块导入
import os
import re
import sys
import time
from tqdm import tqdm
from functools import wraps
from pyltp import SentenceSplitter
# ltp模型目录路径
LTP_DATA_DIR = "D:/PyLTP/ltp_data"
# 数据导入
def batch_file(path, file_list):
for file in os.listdir(path):
fs = os.path.join(path, file)
if os.path.isfile(fs):
file_list.append(fs)
elif os.path.isdir(fs):
batch_file(fs, file_list)
return file_list
# 如果处理APP的那个数据,需要执行这一句来取出文本中键assetPath的值,这个值才是我们需要的
# def get_assetPath(text):
# i = 0
# assetPath_str = ''
# while i <= len(text) - 1:
# test_dict = defaultdict(lambda: '', eval(text[i]))
# assetPath = test_dict['assetPath']
# assetPath_str += assetPath
# i += 1
# return assetPath_str
# 匹配网页标签
def loss_html(text):
pattern_tag = re.compile('</?\w+[^>]*>') # HTML标签
text_html = re.sub(pattern=pattern_tag, repl=' ', string=str(text))
return text_html
# 匹配标签
def loss_label(text):
pattern_img = re.compile(r"<(img|IMG)(.*?)(/>|></img>|>)")
text_img = re.sub(pattern=pattern_img, repl=' ', string=str(text))
pattern_video = re.compile(r'<(video)(.*?)(/>|></video>|>)')
text_video = re.sub(pattern=pattern_video, repl=' ', string=str(text_img))
pattern_src = re.compile(r"(src|SRC)=(\"|\')(.*?)(\"|\')")
text_src = re.sub(pattern=pattern_src, repl=' ', string=str(text_video))
pattern_div = re.compile(r'/<div(([\s\S])*?)<\/div>/g')
text_div = re.sub(pattern=pattern_div, repl=' ', string=str(text_src))
pattern_span = re.compile(r"<(span)(.*?)(/>|></span>|>)")
text_span = re.sub(pattern=pattern_span, repl=' ', string=str(text_div))
pattern_again = re.compile(r'</span>')
text_span_again = re.sub(pattern=pattern_again, repl=' ', string=str(text_span))
pattern_p1 = re.compile(r'<(p)(.*?)(/>|></p>|>)')
text_p1 = re.sub(pattern=pattern_p1, repl=' ', string=str(text_span_again))
pattern_p2 = re.compile(r'(</p>)')
text_p2 = re.sub(pattern=pattern_p2, repl=' ', string=str(text_p1))
pattern_p3 = re.compile(r'(<p)')
text_p3 = re.sub(pattern=pattern_p3, repl=' ', string=str(text_p2))
return text_p3
# 匹配邮箱
def loss_mail(text):
pattern_mail = re.compile('[\w]+(\.[\w]+)*@[\w]+(\.[\w])+')
text_mail = re.sub(pattern=pattern_mail, repl=' ', string=str(text))
return text_mail
# 去除特殊标点
def loss_other(text):
pattern_other = re.compile(r'[\u4e00-\u9fa5]|[\u0030-\u0039]|[\u0041-\u005a]|[\u0061-\u007a]|[,,。 \.;\':/\\:\/!!??]|[\s]]')
text_other = re.findall(pattern=pattern_other, string=str(text))
text_other = ''.join(text_other)
return text_other
# 匹配规则网址
def loss_url(text):
pattern_url1 = re.compile(r'(https?|ftp|file|img3):\/\/[a-z0-9_.:]+\/[-a-z0-9_:@&?=+,.!/~*%$]*(\.(html|htm|shtml))?')
pattern_url2 = re.compile(r'^https?:\/\/([^/:]+)(:(\d)+)?(/.*)?$')
pattern_url3 = re.compile(r'^([a-z0-9]\.|[a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)(com|edu|gov|int|mil|net|org|biz|info|name|museum|coop|aero|[a-z][a-z])$')
pattern_url4 = re.compile(r'(登录|网|网站|网站是|网址|网址是|平台|点击|店|地址|微信公众号|微信号|微信|微信号是|公众号|公众号是)[A-Z.a-z.0-9]{1,100}')
pattern_url5 = re.compile(r'(https?|ftp|file|img3)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]')
pattern_url6 = re.compile(r'(www.)[a-zA-Z0-9\-\.]+')
pattern_url7 = re.compile(r'(登录:|网:|网站:|网站是:|网址:|网址是:|点击:|店:|微信公众号:|微信号:|微信:|微信号是:|公众号:|公众号是)[A-Z.a-z.0-9]{1,100}')
pattern_url8 = re.compile(r'(登录:|网:|网站:|网站是:|网址:|网址是:|点击:|店:|微信公众号:|微信号:|微信:|微信号是:|公众号:|公众号是)[A-Z.a-z.0-9]{1,100}')
text_url1 = re.sub(pattern=pattern_url1, repl=' ', string=str(text))
text_url2 = re.sub(pattern=pattern_url2, repl=' ', string=str(text_url1))
text_url3 = re.sub(pattern=pattern_url3, repl=' ', string=str(text_url2))
text_url4 = re.sub(pattern=pattern_url4, repl=' ', string=str(text_url3))
text_url5 = re.sub(pattern=pattern_url5, repl=' ', string=str(text_url4))
text_url6 = re.sub(pattern=pattern_url6, repl=' ', string=str(text_url5))
text_url7 = re.sub(pattern=pattern_url7, repl=' ', string=str(text_url6))
text_url = re.sub(pattern=pattern_url8, repl=' ', string=str(text_url7))
return text_url
# 匹配不规则网址
def clean_url(text):
pattern_in = re.compile(r'(网.*?)')
corpus_in = re.sub(pattern=pattern_in, repl=' ', string=str(text))
pattern_out = re.compile(r'网(.*?)')
corpus_out = re.sub(pattern=pattern_out, repl=' ', string=str(corpus_in))
pattern_none = re.compile(r'网站\s.*?)')
corpus_none = re.sub(pattern=pattern_none, repl=' ', string=str(corpus_out))
pattern_sim = re.compile(r'网址\s.*?)')
corpus_sim = re.sub(pattern=pattern_sim, repl=' ', string=str(corpus_none))
return corpus_sim
# 匹配连续英文
def loss_continue(text):
pattern_continue = re.compile(r'[A-Za-z ]{13,100}')
text_continue = re.sub(pattern=pattern_continue, repl=' ', string=str(text))
return text_continue
# 匹配特定单词
def loss_word(text):
pattern_word = re.compile(r'htm|chinatimesnetcn|start|http|w w w|h t t p|-|\xa0|\u3000|\r|\t|\n|html|nbsp|video|videobr|epdm|br|alt|img|ref|picType1|imageUrl|divclass|high34|normal34|0datavid|div')
text_word = re.sub(pattern=pattern_word, repl=' ', string=str(text))
return text_word
# 匹配逗号
def loss_comma(text):
pattern_comma = re.compile(r"[,,::]")
text_comma = re.sub(pattern=pattern_comma, repl='。', string=str(text))
return text_comma
# 去掉空行
def delBlankline(infile, outfile):
infopen = open(infile, 'r', encoding="utf-8")
outfopen = open(outfile, 'w', encoding="utf-8")
lines = infopen.readlines()
for line in lines:
if line.split():
outfopen.writelines(line)
else:
outfopen.writelines("")
infopen.close()
outfopen.close()
# 计时装饰器
def func_timer(function):
@wraps(function)
def function_timer(*args, **kwargs):
print('[Function: {name} start...]'.format(name=function.__name__))
t0 = time.time()
result = function(*args, **kwargs)
t1 = time.time()
print('[Function: {name} finished, spent time: {time:.2f}s]'.format(name=function.__name__, time=t1 - t0))
return result
return function_timer
# 定义main()函数
@func_timer
def main(argv):
try:
file_list = []
file_path = batch_file(path=argv, file_list=file_list)
for path in file_path:
# 如果处理APP数据,需要执行下面两行代码
# app = open(path, encoding='utf-8').readlines()
# assetPath_text = get_assetPath(text=app)
assetPath_text = open(path, encoding='utf-8').readlines()
except:
assetPath_text = open(argv, encoding='utf-8').readlines()
assetPath_loss_html = loss_html(text=assetPath_text)
assetPath_loss_label = loss_label(text=assetPath_loss_html)
assetPath_loss_mail = loss_mail(text=assetPath_loss_label)
assetPath_loss_other = loss_other(text=assetPath_loss_mail)
assetPath_loss_url = loss_url(text=assetPath_loss_other)
assetPath_clean_url = clean_url(text=assetPath_loss_url)
assetPath_loss_continue = loss_continue(text=assetPath_clean_url)
assetPath_loss_word = loss_word(text=assetPath_loss_continue)
assetPath_loss_comma = loss_comma(text=assetPath_loss_word)
# 分句
english_text_sentence = SentenceSplitter.split(assetPath_loss_comma)
# 去掉其余符号并写入文件
pattern_all = re.compile(r"[。.;;??!!:/丨:']")
pattern_last = re.compile(r'[a-zA-Z0-9]{13,}')
pattern_rnt = re.compile(r'[\\n|\\r|\\t|u3000|xa0]') # 按道理之前的规则可以匹配这些字符的
f = open("sentenceSplitPre.txt", mode='a', newline='', encoding='utf-8')
for i in tqdm(english_text_sentence):
if len(i) <= 100:
i = re.sub(pattern=pattern_all, repl=' ', string=i)
i = re.sub(pattern=pattern_last, repl=' ', string=i)
i = re.sub(pattern=pattern_rnt, repl='', string=i)
f.write(i.strip() + '\n')
f.close()
delBlankline("sentenceSplitPre.txt", "passage_cleaned.txt")
os.remove("sentenceSplitPre.txt")
if __name__ == '__main__':
main(sys.argv[1])