-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathMakeFeatures.py
154 lines (106 loc) · 4.78 KB
/
MakeFeatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import cv2
from sklearn.cluster import MiniBatchKMeans
import pickle
import cupy as cp
import cyvlfeat as cy
dict_name= {0:'Jaffe',1:'Fer2013',2:'CK+',3:'BigFer2013'}
Fer_error_imgs = [2172, 5275, 6459, 7630, 10424, 11287, 13149, 13403, 13989, 15895, 22199, 22928, 28602, 30003]
def Extractor(Images,method_detector="FAST",data_code=1):
Detector = None
Descriptor = None
if(method_detector=="FAST"):
Detector = cv2.FastFeatureDetector.create()
Descriptor = cv2.xfeatures2d_SIFT.create()
else:
Detector = cv2.xfeatures2d_SIFT.create()
Descriptor= cv2.xfeatures2d_SIFT.create()
desc_seq = []
count = 0
for img in Images:
kp = Detector.detect(img)
kp,desc = Descriptor.compute(img,kp)
if(len(kp)==0):
count +=1
continue
print("Image Number "+str(count)+" has been extracted !")
desc_seq.append(desc)
count+=1
print("Images Extracted !")
print("Start concatnating !")
descriptors_data = cp.array(desc_seq[0])
for remaining in desc_seq[1:]:
descriptors_data = cp.vstack((descriptors_data , remaining))
##print("Descriptors shape :" + str(descriptors_data.shape))
descriptors_data = cp.asnumpy(descriptors_data)
print("End concatnating !")
print("Descritors ready to cluster !")
filename = dict_name[data_code]+"_"+method_detector+"feature_SIFTDescriptors.npy"
np.save(filename,descriptors_data)
print(filename+" has been saved to disk !")
def Vocabularyize(X_filename,data_name_code,K=2048,detector_name="SITF"):
X = np.load(X_filename)
print("Clustering !!!!")
K_model = MiniBatchKMeans(n_clusters=K,max_iter=300,batch_size=K*2,max_no_improvement=30,init_size=3*K).fit(X)
print("Clustered !!!!")
# save the model to disk
filename = dict_name[data_name_code]+"_"+detector_name+"Detector_Kmean_model.sav"
pickle.dump(K_model, open(filename, 'wb'))
print("Model Saved !!!!")
def Vetorize_of_An_Image(img,Kmean,detector_method="SIFT"):
if detector_method == "SIFT":
Detector = cv2.xfeatures2d_SIFT.create() ## cv2.FastFeatureDetector.create()
Descriptor = cv2.xfeatures2d_SIFT.create()
else:
Detector = cv2.FastFeatureDetector.create()
Descriptor = cv2.xfeatures2d_SIFT.create()
vector_2048 = np.zeros(2048,dtype='uint8')
kp = Detector.detect(img)
kp, desc = Descriptor.compute(img, kp)
if(len(kp)==0):
return vector_2048
predictions = Kmean.predict(desc)
for pre in predictions:
vector_2048[pre] +=1
return vector_2048
def Histogram_All_Images(imgs,Kmean,detector_method="SIFT",data_name_code=1,):
Stack = Vetorize_of_An_Image(imgs[0], Kmean)
count = 0
print("Imgage Number " + str(count) + " in Stack !")
for img in imgs[1:]:
vector = Vetorize_of_An_Image(img,Kmean,detector_method)
Stack = np.vstack((Stack,vector))
count +=1
print("Imgage Number "+str(count)+" in Stack !")
print("Histogram Generated ! ")
filename = dict_name[data_name_code]+"_"+detector_method+"Detector_Histogram.npy"
np.save(filename,Stack)
print("Saved Histogram as numpy array to disk !")
def Dense_SIFT_Extractor(images,data_name_code):
kp, desc0 = cy.sift.dsift(images[0], step=1, size=1, bounds=None, window_size=1, norm=True,
fast=True, float_descriptors=True, geometry=(4, 4, 8),
verbose=False)
count = 0
print("Imgage Number " + str(count) + " in Stack !")
kp, desc1 = cy.sift.dsift(images[1], step=1, size=1, bounds=None, window_size=1, norm=True,
fast=True, float_descriptors=True, geometry=(4, 4, 8),
verbose=False)
count = 1
print("Imgage Number " + str(count) + " in Stack !")
concate = np.concatenate((desc0,desc1))
for img in images[2:]:
kp , desc = cy.sift.dsift(img, step=1, size=1, bounds=None, window_size=1, norm=True,
fast=True, float_descriptors=True, geometry=(4, 4, 8),
verbose=False)
concate = np.concatenate((concate,desc))
print(concate.shape)
count +=1
print("Imgage Number "+str(count)+" in Stack !")
print("All Dense SIFT Descriptors Generated ! ")
filename = dict_name[data_name_code]+"_DenseSIFF_Descriptors.npy"
concate = np.reshape(concate,(images.shape[0],2025,128))
np.save(filename,concate)
print("Saved all dense sift descriptors as numpy array to disk !")
#X = np.load("Fer_X.npy")
#X = X.astype("uint8")
#Dense_SIFT_Extractor(X,1)