-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorchvision.py
44 lines (36 loc) · 1.18 KB
/
torchvision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch.nn as nn #модуль в котором определены все классы слоев сетей и функции активации
import torch
# import mysql.connector
# import matplotlib.pyplot as plt
# import os
# import torchvision
# import cv2
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.dataset import T_co
# from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# from torchvision.models.detection import FasterRCNN
x_tenzor = torch.tensor([2, 3])
print(f'инициализвация tenzor : {x_tenzor}')
x_tenzor = x_tenzor + 5
print(x_tenzor)
class Network(nn.Module):
def __init__(Network, self):
super().__init__()
self.fc1 = nn.Linear(784, 20);
self.fc2 = nn.Sigmoid();
self.fc3 = nn.Linear(20, 10);
def forward(self, x) -> torch.tensor:
x = self.fc1(x);
x = self.fc2(x)
x = self.fc3(x);
x = nn.func.softmax(x);
return x
def fit(self, lerning_rate):
pass
class MnistDatasets(Dataset):
def __init__(self):
super().__init__()
def __len__(self):
pass
def __getitem__(self, index) -> T_co:
pass